The formula that describes the transformation of rational exponents to radical form is:
![a^{\frac{n}{m}} = \sqrt[m]{a^n}](https://tex.z-dn.net/?f=a%5E%7B%5Cfrac%7Bn%7D%7Bm%7D%7D%20%3D%20%5Csqrt%5Bm%5D%7Ba%5En%7D)
<h3>
Transformation of rational exponents to radical form:</h3>
- A rational exponent is represented by:
.
- That is, the exponent is a fraction, in which m is the numerator and n is the denominator.
- In the conversion to radical form, the numerator will be power(also exponent), while the denominator will be the root.
Hence, the formula for the transformation is:
![a^{\frac{n}{m}} = \sqrt[m]{a^n}](https://tex.z-dn.net/?f=a%5E%7B%5Cfrac%7Bn%7D%7Bm%7D%7D%20%3D%20%5Csqrt%5Bm%5D%7Ba%5En%7D)
You can learn more about the transformation of rational exponents to radical form at brainly.com/question/7296346
Answer:
the top right is the only function
Step-by-step explanation:
a function is defined as any set of points for which one x value only has one y value
If we take the Pythagorean identity identity sin^2 x + cos^2 x = 1 then
<span>(cos^2 x + sin^2 x) / (cot^2 x - csc^2 x)
The numerator becomes 1 since addition order matters not.
1 / </span>(cot^2 x - csc^2 x)
If we factor the denominator out a negative
1 / -(<span>csc^2 x - cot^2 x)
Consider </span><span>sin^2 x + cos^2 x = 1. Divide both sides by sin^2 x to get
1 + cot^2 x = csc^2 x
Subtract both sides by cot^2 x to get 1 = csc^2 x - cot^2 x.
Replace the denominator
1 / -(1) = -1
For cos</span>^2 θ / sin^2 θ + csc θ sin θ, we use cscθ = 1/sinθ and cosθ/sinθ = cotθ so
= cos^2 θ / sin^2 θ + 1
= cot^2 θ + 1
We use 1 + cot^2 <span>θ = csc^2 </span>θ to simplify this to
= csc^2 θ
Answers: -1
csc^2 θ