Refer to the diagram shown below.
Let I = the moment of inertia of the wheel.
α = 0.81 rad/s², the angular acceleration
r = 0.33 m, the radius of the weel
F = 260 N, the applied tangential force
The applied torque is
T = F*r
= (260 N)*(0.33 m)
= 85.8 N-m
By definition,
T = I*α
Therefore,
I = T/α
= (85.8 N-m)/(0.81 rad/s²)
= 105.93 kg-m²
Answer: 105.93 kg-m²
<h2>♨ANSWER♥</h2>
14mg = 14 × 10^-3 g
= 14 × 10^-3 / 10^3 kg
= 14 × 10^-6 kg
= 0.014 kg
<u>☆</u><u>.</u><u>.</u><u>.</u><u>hope this helps</u><u>.</u><u>.</u><u>.</u><u>☆</u>
_♡_<em>mashi</em>_♡_
Answer:
4units
Explanation:
To calculate the total distance the beam will travel along this path, you will use the formula for calculating the distance between two coordinates expressed as;
D = √(x2-x1)²+(y2-y1)²
Given the coordinate points
(3,5) and (7,5)
Substitute
D = √(7-3)²+(5-5)²
D = √(7-3)²+0²
D = √4²
D = √16
D = 4
Hence the total distance the beam will travel along this path is 4units