Answer:
The vector magnitudes F and r are always postive, so the sign o W is determined entirely by the angle e between the force and the displacement.Submit Figure 1 off 1 part C
Answer:
286
Explanation:
p1v1/T1=p2v2/T2
then subtitude your values
T2=760*0.65*273/210*0.040
T2=135/8.4=16+273=289
Wood, water, Forests. The rest can have harm to the nature.
Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Answer:
ΔE = GMm/24R
Explanation:
centripetal acceleration a = V^2 / R = 2T/mr
T= kinetic energy
m= mass of satellite, r= radius of earth
= gravitational acceleration = GM / r^2
Now, solving for the kinetic energy:
T = GMm / 2r = -1/2 U,
where U is the potential energy
So the total energy is:
E = T+U = -GMm / 2r
Now we want to find the energy difference as r goes from one orbital radius to another:
ΔE = GMm/2 (1/R_1 - 1/R_2)
So in this case, R_1 is 3R (planet's radius + orbital altitude) and R_2 is 4R
ΔE = GMm/2R (1/3 - 1/4)
ΔE = GMm/24R