Answer:
4.6 is 5 , 0.5 is 1, 4.5 is 5, 5.5 is 6 and 0.6 is 1
Step-by-step explanation:
If the second digit after the decimal is 5 or high you round it up
Answer:
i think it is 6 but not sure
Step-by-step explanation:
Answer:
La identificación de la intención del mensaje o del texto leído no es otra cosa que la interpretación del mismo. Es decir, a través de la lectura y la identificación de las diferentes variables comunicativas, el lector realiza un análisis del contenido del texto y lo interpreta, buscando dilucidar la intención que el redactor tuvo al momento de escribir el mensaje o texto en cuestión. La interpretación de textos es fundamental para poder comprender lo que se encuentra redactado, es decir, para poder lograr una total comprensión del texto.
For the first one, to find x, you are going to take that entire side which would equal to 180 and solve. 2x+20+55=180 would then go down to 2x+65=180 once you add the 20 and 55. Then subtract 65 to both sides and divide your final answer 115/2 which is x=57.5. For the second one it’s 4x-2+21=180, then you will subtract 2 from 21 and get 19. After you would subtract 19 by 180 and divide 4 by each side, getting x=40.25 as your final answer.
Answer:
The diagram for the question is missing, but I found an appropriate diagram fo the question:
Proof:
since OC = CD = 297mm Therefore, Δ OCD is an isoscless triangle
∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
∠DOP = 22.5°
∠PDO = 67.5°
∠ADO = 22.5°
∠AOD = 67.5°
Step-by-step explanation:
Given:
AB = CD = 297 mm
AD = BC = 210 mm
BCPO is a square
∴ BC = OP = CP = OB = 210mm
Solving for OC
OCB is a right anlgled triangle
using Pythagoras theorem
(Hypotenuse)² = Sum of square of the other two sides
(OC)² = (OB)² + (BC)²
(OC)² = 210² + 210²
(OC)² = 44100 + 44100
OC = √(88200
OC = 296.98 = 297
OC = 297mm
An isosceless tringle is a triangle that has two equal sides
Therefore for △OCD
CD = OC = 297mm; Hence, △OCD is an isosceless triangle.
The marked angles are not given in the diagram, but I am assuming it is all the angles other than the 90° angles
Since BC = OB = 210mm
∠BCO = ∠BOC
since sum of angles in a triangle = 180°
∠BCO + ∠BOC + 90 = 180
(∠BCO + ∠BOC) = 180 - 90
(∠BCO + ∠BOC) = 90°
since ∠BCO = ∠BOC
∴ ∠BCO = ∠BOC = 90/2 = 45
∴ ∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
For ΔOPD

Note that DP = 297 - 210 = 87mm
∠PDO + ∠DOP + 90 = 180
∠PDO + 22.5 + 90 = 180
∠PDO = 180 - 90 - 22.5
∠PDO = 67.5°
∠ADO = 22.5° (alternate to ∠DOP)
∠AOD = 67.5° (Alternate to ∠PDO)