1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
9

Convert 3 5/8 + 1 3/4 to an improper fraction

Mathematics
2 answers:
Charra [1.4K]3 years ago
7 0

<em> </em><em>ans</em><em> </em><em>is</em><em> </em><em>4</em><em>3</em><em>/</em><em>8</em><em>.</em>

<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>✳</em><em>✴</em><em>⤴</em><em>⤴</em>

fenix001 [56]3 years ago
7 0

3\frac{5}{8} + 1\frac{3}{4} = \frac{3*8 + 5}{8} + \frac{4+3}{4} = \frac{29}{8} + \frac{7}{4} = \frac{29+14}{8} (We take 8, which is the LCM of 4 and 8, as the common denominator) = \frac{43}{8}

You might be interested in
Find x in this proportion. x/3 = x+2/5 x =
pickupchik [31]

<em>x = 3 \\ solution \\  \frac{x}{3}  =  \frac{x + 2}{5}  \\ or \: 5x = 3(x + 2)(cross \: multiplication) \\ or \: 5x = 3x + 6 \\or \: 5x - 3x = 6 \\  or \: 2x = 6 \\ or \: x =  \frac{6}{2}  \\ x = 3 \\ hope \: it \: helps</em>

8 0
3 years ago
Can anyone help me integrate :
worty [1.4K]
Rewrite the second factor in the numerator as

2x^2+6x+1=2(x+2)^2-2(x+2)-3

Then in the entire integrand, set x+2=\sqrt3\sec t, so that \mathrm dx=\sqrt3\sec t\tan t\,\mathrm dt. The integral is then equivalent to

\displaystyle\int\frac{(\sqrt3\sec t-2)(6\sec^2t-2\sqrt3\sec t-3)}{\sqrt{(\sqrt3\sec t)^2-3}}(\sqrt3\sec t)\,\mathrm dt
=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{\sqrt{\sec^2t-1}}\,\mathrm dt
=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{\sqrt{\tan^2t}}\,\mathrm dt
=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{|\tan t|}\,\mathrm dt

Note that by letting x+2=\sqrt3\sec t, we are enforcing an invertible substitution which would make it so that t=\mathrm{arcsec}\dfrac{x+2}{\sqrt3} requires 0\le t or \dfrac\pi2. However, \tan t is positive over this first interval and negative over the second, so we can't ignore the absolute value.

So let's just assume the integral is being taken over a domain on which \tan t>0 so that |\tan t|=\tan t. This allows us to write

=\displaystyle\int\frac{(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t}{\tan t}\,\mathrm dt
=\displaystyle\int(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\csc t\,\mathrm dt

We can show pretty easily that

\displaystyle\int\csc t\,\mathrm dt=-\ln|\csc t+\cot t|+C
\displaystyle\int\sec t\csc t\,\mathrm dt=-\ln|\csc2t+\cot2t|+C
\displaystyle\int\sec^2t\csc t\,\mathrm dt=\sec t-\ln|\csc t+\cot t|+C
\displaystyle\int\sec^3t\csc t\,\mathrm dt=\frac12\sec^2t+\ln|\tan t|+C

which means the integral above becomes

=3\sqrt3\sec^2t+6\sqrt3\ln|\tan t|-18\sec t+18\ln|\csc t+\cot t|-\sqrt3\ln|\csc2t+\cot2t|-6\ln|\csc t+\cot t|+C
=3\sqrt3\sec^2t-18\sec t+6\sqrt3\ln|\tan t|+12\ln|\csc t+\cot t|-\sqrt3\ln|\csc2t+\cot2t|+C

Back-substituting to get this in terms of x is a bit of a nightmare, but you'll find that, since t=\mathrm{arcsec}\dfrac{x+2}{\sqrt3}, we get

\sec t=\dfrac{x+2}{\sqrt3}
\sec^2t=\dfrac{(x+2)^2}3
\tan t=\sqrt{\dfrac{x^2+4x+1}3}
\cot t=\sqrt{\dfrac3{x^2+4x+1}}
\csc t=\dfrac{x+2}{\sqrt{x^2+4x+1}}
\csc2t=\dfrac{(x+2)^2}{2\sqrt3\sqrt{x^2+4x+1}}

etc.
3 0
3 years ago
Find the volume for the regular pyramid.<br><br><br><br> V =
mylen [45]
The volume is given by:
 V = L * Apb * h
 Where,
 L: side of the base
 Apb: apothema of the base
 h: height
 Substituting we have:
 V = (4) * ((root (3) / 2) * 4) * (6)
 Rewriting we have:
 V = (4) * ((root (3) / 2) * 4) * (6)
 V = 96 * (root (3) / 2)
 V = 48 * root (3)
 Answer:
 
V = 48 * root (3)
7 0
3 years ago
Read 2 more answers
Please Help!! and explain in detail!!!!
tatuchka [14]

Answer:

  1/36 = 0.02777...

Step-by-step explanation:

Given the sequence 1, 0.25, 0.111..., 0.0625, 0.04, you would like to know the next term.

<h3>Terms</h3>

We recognize the decimal values to be equivalent to ...

  1, 1/4, 1/9, 1/16, 1/25

That is, they are the reciprocals of successive squares.

<h3>Next term</h3>

The next term will be the reciprocal of the 6th square:

  1/36 = 0.02777...

8 0
1 year ago
I need help on. this question. (3x^6)^3 the answer must have one exponent
kotykmax [81]

Answer:

27x^{18}

Step-by-step explanation:

\left(3x^6\right)^3

Separate 3x^6:

3^3\times\left(x^6\right)^3

27\times\left(x^6\right)^3

27x^{6\times3}

27x^{18}

5 0
3 years ago
Other questions:
  • An Uber fare in Columbus is $3.50 for the first ½ mile and additional mileage charged at a rate of $0.30 for each additional 0.1
    5·1 answer
  • Sea turtles are among the most ancient creatures on Earth. There are seven species of them today and they all have existed for 1
    7·1 answer
  • Find the radius of the circle with equation x^2 + y^2 - 10x - 16y + 53 = 0.
    13·1 answer
  • paul and sue received a total of $400. The amount received by sue was eighthy dollars less than 3 times the amount received by p
    8·1 answer
  • Trig please help
    6·1 answer
  • Please help!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
  • GIVING AWAY BRAINLIEST TO FIRST AND CORRECT ANSWER!!! Rewrite the following function in slope intercept form.
    15·2 answers
  • What is the product (3x10^9) x (2x10^17) in scientific notation
    12·2 answers
  • 1/5 divided by (6 x 4)
    10·1 answer
  • 2m · 2n would be the same as _____.<br><br> A) 4 mn<br> B) 2 m + n<br> C) 2 mn<br> D) 2 m - n
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!