Answer:
the answer is static electricity
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
Answer:
12 m/s
Explanation:
Using the continuity equation, which is an extension of the conservation of mass law
ρ₁A₁v₁ = ρ₂A₂v₂
where 1 and 2 indicate the conditions at two different points of flow, in this case, point 1 is any normal position in the pip and point 2 is the conditions at the restriction.
ρ = density of the fluid flowing; note that the density of the fluid flowing (water) is constant all through the fluid's flow
A₁ = Cross sectional Area of the pipe at point 1 = (πD₁²/4)
A₂ = Cross sectional Area of the pipe at the restriction = (πD₂²/4)
v₁ = velocity of the fluid flowing at point 1 = 3 m/s
v₂ = velocity of the fluid flowing at The restriction = ?
ρ₁A₁v₁ = ρ₂A₂v₂
Becomes
A₁v₁ = A₂v₂ (since ρ₁ = ρ₂)
(πD₁²/4) × 3 = (πD₂²/4) × v₂
3D₁² = D₂² × v₂
But
D₂ = (D₁/2)
And D₂² = (D₁²/4)
3D₁² = D₂² × v₂
3D₁² = (D₁²/4) × v₂
(D₁²/4) × v₂ = 3D₁²
v₂ = 4×3 = 12 m/s
The answer would be that the plane would move upward and to the right! Hope this helps, message me if you need more help!
~PLUTO100