An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.
<h3>Why an egg thrown at a concrete wall will break?</h3>
An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not because the momentum and acceleration increases when the egg is thrown downward due to gravity but when we throw an egg in the vertical direction, they move against gravity so the momentum and acceleration decreases.
So we can conclude that an egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
What is the acceleration of an object moving at a constant speed?
The Meaning of Constant Acceleration
The data table above show an object changing its velocity by 10 m/s in each consecutive second. This is referred to as a constant acceleration since the velocity is changing by a constant amount each second.
Answer
given,
current (I) = 16 mA
circumference of the circular loop (S)= 1.90 m
Magnetic field (B)= 0.790 T
S = 2 π r
1.9 = 2 π r
r = 0.3024 m
a) magnetic moment of loop
M= I A
M=
M=
M=
b) torque exerted in the loop



Answer:
The work flow required by the compressor = 100.67Kj/kg
Explanation:
The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .
The work flow can be determined using the equation:
M1h1 + W = Mh2
U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2
Workflow = P2alpha2 - P1alpha1
Workflow = (h2 -U2) - (h1 - U1)
Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)
Workflow = ( 193.191 - 92.519)Kj/kg
Workflow = 100.672Kj/kg
Answer:
(a) 0.063 m/s
(b) 1.01 m/s
Explanation:
rate of volume flow, V = 4 x 10^-6 m^3/s
(a) radius, r = 4.5 x 10^-3 m
Let the speed of blood is v.
So, V = A x v
where A be the area of crossection of artery
4 x 10^-6 = 3.14 x 4.5 x 10^-3 x 4.5 x 10^-3 x v
v = 0.063 m/s
Thus, the speed of flow of blood is 0.063 m/s .
(b) Now r' = r / 4 = 4.5 /4 x 10^-3 m = 1.125 x 10^-3 m
Let the speed is v'.
So, V = A' x v'
4 x 10^-6 = 3.14 x 1.125 x 10^-3 x 1.125 x 10^-3 x v'
v' = 1.01 m/s
Thus, the speed of flow of blood is 1.01 m/s .