1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
3 years ago
10

Select the symbol that represents the phrase "at most."

Mathematics
1 answer:
anastassius [24]3 years ago
4 0
Your answer will be c
You might be interested in
Don't answer this please Brodies
Nitella [24]
Okeyuyyyyyyyyyyyyy but why did you post it then
8 0
3 years ago
Help help help help help help help
MrRa [10]
The 2nd one is the answer because it shows Distributive Property which is a(b+c) or <span>(b+c)a.</span>
6 0
3 years ago
Read 2 more answers
The table shows a bicycle rider moving at a constant rate of speed.
Mariana [72]
<h2><u>Answer:</u></h2><h2>\boxed{\boxed{\sf{Distance}}}</h2><h2 /><h2><u>Solution Steps:</u></h2>

______________________________

<h3>1.) Dependent Variable:</h3>
  • A dependent variable is almost always the (y) variable. This also means it depends on another variable. The way you can tell it's dependent for this problem is that the per the rule: distance = time. This means that the distance changes based on the time.
  • (y) depends on (x)

So your answer is Distance.

______________________________

7 0
3 years ago
Fill in Sin, Cos, and tan ratio for angle x. <br> Sin X = 4/5 (28/35 simplified)
Fantom [35]

Answer:

Given: \sin(x) = (4/5).

Assuming that 0 < x < 90^{\circ}, \cos(x) = (3/5) while \tan(x) = (4/3).

Step-by-step explanation:

By the Pythagorean identity \sin^{2}(x) + \cos^{2}(x) = 1.

Assuming that 0 < x < 90^{\circ}, 0 < \cos(x) < 1.

Rearrange the Pythagorean identity to find an expression for \cos(x).

\cos^{2}(x) = 1 - \sin^{2}(x).

Given that 0 < \cos(x) < 1:

\begin{aligned} &\cos(x) \\ &= \sqrt{1 - \sin^{2}(x)} \\ &= \sqrt{1 - \left(\frac{4}{5}\right)^{2}} \\ &= \sqrt{1 - \frac{16}{25}} \\ &= \frac{3}{5}\end{aligned}.

Hence, \tan(x) would be:

\begin{aligned}& \tan(x) \\ &= \frac{\sin(x)}{\cos(x)} \\ &= \frac{(4/5)}{(3/5)} \\ &= \frac{4}{3}\end{aligned}.

7 0
2 years ago
- 100 points -
Molodets [167]

Answer:

B

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Compute the permutation.
    13·1 answer
  • What is the sum of 24 and 12 divided by 9
    5·2 answers
  • What is the value of x?
    11·1 answer
  • Maria can bake 28 cupcakes with 3 scoops of flour. How many cupcakes can she bake with 27 scoops of flour?
    10·1 answer
  • Find the volume of the right cylinder. Round your answer to two decimal places.
    7·1 answer
  • How do I identify rational and irrational numbers?
    7·2 answers
  • write a pair of numbers such that the value of the 7 in the first number is 1,000 times the value of the 7 in the second number,
    5·1 answer
  • Please Help). Polygon ABCD is the result of translation of polygon EFGH. AB is parallel to DC in the pre-image. Will Mark Brainl
    15·1 answer
  • Henry believes that if you square the expression x^4 The result will be x^16. Is Henry correct? (Help please)
    8·1 answer
  • For the basic function f(x) = x, which conclusion can you not make about f(x) and 0.5f(x)?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!