Answer:
The classic tool to predict the patterns of heredity is using a <u>Punnett Square</u>.
Explanation:
In genetics, a trait can be considered dominant or recessive. Since the important discoveries of Gregor Mendel, scientists use a <u>capital letter (D) to indicate a trait is dominant, and a lowcase letter (d) to show a trait is recessive. </u>
Assuming that a scientist knows the genotype for the desired trait they want to predict on the offpsring, a Punnett Square is<u> a reliable tool and a graphic representation that permits them to visualize the potential features of the offspring by showing how the alleles may be exhibited and passed on the offspring and will determine the possible combination of genotypes.</u>
<em>How does it work?</em>
For example, as we can observe in the image below, both parents are homozygous for a trait <em>PP=Purple; pp=white</em>. P is dominant and p is recessive (the color purple will be dominant, and the white will be recessive). So, we put one parent's genotype in the top row (PP) and the other parent's genotype in the left column (pp) and combine one of each letters on the squares, <em>i.e</em>. one of each parent's alleles. Then, we can observe in the results that 3 of the offspring will exhibit the purple color (PP, Pp, Pp) and only one will exhibit the white recessive color (pp); or more properly known as a genotypic ratio of 3:1.
Answer:
Glycogen synthase is phosphorylated at only one site.
Explanation:
Glycogen synthase has multiple sites where phosphorylation can occur. Glycogen synthase may have 9 or more sites where it can be phosphorylated as a result of which it's activity is down regulated. It simply means that the regulation of this enzyme does not occur through binary on/off switching, in fact it's activity is modulated over a wide range in response to various signals.
In contrast to glycogen phosphorylase which gets activated when it is phosphorylated at it's serine residues, glycogen synthase gets inactivated by phosphorylation.
As soon as another enzyme GSK3β phosphorylates glycogen synthase, it gets inactivated as a result of which glycogen synthesis halts in the liver.
During cellular respiration, electrons are produced. The oxygen molecule accepts these electrons, then combines them with protons to make water. This outputs ATP, which is what the rabbit uses for energy. At the end of the process, carbon dioxide is released. From here, the carbon dioxide travels to one of the rabbit's favorite plants. This helps plants breathe. Sunlight penetrates the leaves of the plant, which are generating into sugar molecules within the chloroplast. The substance is known as chlorophyll. Electrons make the chemical process go more quickly. At the end, the plant releases oxygen back to the rabbit.
Can I get brainliest? I hope my answer suffices :D
- Biology Definition: Respiration is a chemical reaction that happens in all living cells. (Both plant cells and animal cells). Respiration is the way that energy is released from glucose so that all the other chemical processes needed for life can happen.
- Normal definition: The action of breathing, also called ventilation.
<em>___________________________________________________________</em>

D. both plants and animals need freshwater to live