Answer:
Mass and velocity.
Explanation:
Kinetic energy <u>is the energy that an object has due to its movement</u>, mathematically it is represented as follows:

where
is the mass of the object, and
is its velocity at a given point in time.
So we can see that to find the kinetic energy just before the ball hits the gound, we need the quantities:
- mass of the ball
- velocity of the ball before it hits the ground
With the knowledge of these two quantities the kinetic energy of the ball before touching the gound can be determined.
It's inertia. A rule that you see every day, for example a brick will stay in the same spot unless a force acts on it.
W=mgh W=(20)(9.8)(1) w=196J
Answer:
Explanation:
The path length difference = extra distance traveled
The destructive interference condition is:

where m =0,1, 2,3........
So, ←
![\Delta d = (m+1/2)\lamb da9/tex]so [tex]\Delta d = \frac{\lambda}{2}](https://tex.z-dn.net/?f=%5CDelta%20d%20%3D%20%28m%2B1%2F2%29%5Clamb%20da9%2Ftex%5D%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3Eso%20%3C%2Fstrong%3E%5Btex%5D%5CDelta%20d%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%7D)
⇒ λ = 2Δd = 2×10 = 20
The answer is C. Hope this helps.