Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Answer:
d) What is the force if we doubled both the masses AND we doubled the distance
Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
(1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):

Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:

you replace the values of all variables:

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.
Answer:
If you apply a force to separate 2 opposite poles, the potential energy of the system increases.