The correct option is C.
In physics, the gravitational law makes us to understand that gravity change with altitude. The higher the altitude, the more the gravity one will experiences. Change in altitude also produce change in weight but all these changes are not really significant. Therefore, there will be no significant difference between weighing metals at different altitude, this is because the effect of gravity on them will be the same.
Answer:
0.4455 m
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
Total mass is

Here the spring constant is not given so let us assume it as 
Here, the forces are balanced

The springs are compressed by 0.4455 m
Answer:
97.5%
Explanation:
By the empirical rule (68-95-99.7),
- 68% of data are within <em>μ </em>- <em>σ</em> and <em>μ </em>+ <em>σ</em>
- 95% of data are within <em>μ </em>- 2<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
- 99.7% of data are within <em>μ </em>- 3<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
<em>σ </em> and <em>μ</em> are the standard deviation and the mean respectively.
From the question,
<em>μ</em> = 7.2 cm
<em>σ</em> = 0.38 cm
7.96 = 7.2 + (<em>n</em> × 0.38)
<em>n</em> = 2
Hence, 7.96 represents <em>μ </em>+ 2<em>σ</em>.
P(X < <em>μ </em>+ 2<em>σ</em>) = P(X < <em>μ</em>) + P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>)
P(X < <em>μ</em>) is the percentage less than the mean = 50%.
P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>) is half of P(<em>μ </em>- 2<em>σ</em> < X < <em>μ </em>+ 2<em>σ</em>) = 95% ÷ 2 = 47.5%.
Considering this, for apples that are no more than 7.96 cm,
P(X < 7.96) = P(X < 7.2) + P(7.2 < X < 7.96) = 50% + 47.5% = 97.5%
<em />
Answer:
2.5 ms^-2
Explanation:
acceleration
= (final velocity - initial velocity)/time
= [(40m/s) - (20m/s)]/8s
= (20m/s)/8s
= 5/2 m/s²
= 2.5 m/s²
= 2.5 ms^-2