She added the numerators
instead of multiplying them
you should also simplify the final answer
the correct answer would be -3 1/8 or -25/8 as an improper fraction.
Answer:
a
Step-by-step explanation:
You're trying to find the distance between D and E so u use the distance formula.
sqrt (a+b-b^2)+(c-c)^2=sqrt a^2=a
Answer:
<u><em>canvases over weeks
</em></u>
<u><em>
</em></u>
<u><em>Step-by-step explanation:
</em></u>
<u><em>
</em></u>
<u><em>Given:
</em></u>
<u><em>
</em></u>
<u><em>w(h) represents how many hours per week
</em></u>
<u><em>
</em></u>
<u><em>c(t) approximates how many canvases she paints per hour
</em></u>
<u><em>
</em></u>
<u><em>In function composition, if we have two function f(x) and g(x) then
</em></u>
<u><em>
</em></u>
<u><em>(f.g)(x) or f(g(x)) means first apply g(), then apply f() i.e. applying function f to the results of function g.
</em></u>
<u><em>
</em></u>
<u><em>Now we have c(w(h)), this means first we apply w(h) which will give us hours per week and then we'll apply function 'c' on the results of 'w' (that is number of hours for weeks painted). As result we'll get number of canvas </em></u>per week!
Answer:
This problem is incomplete, we do not know the fraction of the students that have a dog and also have a cat. Suppose we write the problem as:
"In Mrs.Hu's classroom, 4/5 of the students have a dog as a pet. X of the students who have a dog as a pet also have cat as a pet. If there are 45 students in her class, how many have both a dog and a cat as pets?"
Where X must be a positive number smaller than one, now we can solve it:
we know that in the class we have 45 students, and 4/5 of those students have dogs, so the number of students that have a dog as a pet is:
N = 45*(4/5) = 36
And we know that X of those 36 students also have a cat, so the number of students that have a dog and a cat is:
M = 36*X
now, we do not have, suppose that the value of X is 1/2 ("1/2 of the students who have a dog also have a cat")
M = 36*(1/2) = 18
So you can replace the value of X in the equation and find the number of students that have a dog and a cat as pets.