1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
12

If an area of a rectangle with width x can be represented with the expression A(x)=x(14-x), what is the perimeter of the rectang

le?
A.) 28
B.) 56
C.) 56-4x
D.) 4x+28
Mathematics
1 answer:
AlekseyPX3 years ago
6 0
To solve for the perimeter first figure out the length and width from the formula of area for the rectangle
A = LxW
A = (14-X)•X
L = (14-X)
W = X
P = 2L + 2W
P = 2(14-X) + 2(X)
P = 28 - 2X + 2X
P = 28.
The perimeter of the rectangle is A. 28.
You might be interested in
These are the first four terms of a sequence.
DedPeter [7]

Answer:

2+3n

Step-by-step explanation:

This question is based on a topic called sequence and series,under which we have the arithmetic progression

The formula for arithmetic progression is a+(n-1)d

In which a is the first number,n is the nth term and d is the difference

Back to the question

a=5,n=it's not given,d=3

Using the general formula

a+(n-1)d

5+(n-1)3

Open the bracket first

5+3n-3

Collect like terms

5-3+3n

2+3n

The answer is 2+3n

And it can be solved further only if we are given the value of n...the question even stated that we should solve in terms of n

Therefore the answer is 2+3n

3 0
3 years ago
Read 2 more answers
Use the Distributive Property to simplify the expression.<br><br> 3(x+4)$
mezya [45]
3x + 12 I’m guessing not sure if it’s right
5 0
3 years ago
You invest $350 in an account with an interest rate of 1.2% compounded continuously. How much money would be in the account afte
kozerog [31]
Change 1.2%into decimal you will get 0.012
then multiply 350 by 0.012 you got the answer
then add the 0.012 with the 10 you will get 10.012
at the end round your answer to the whole number
5 0
3 years ago
Read 2 more answers
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
Please helppppppppppppppppppppppppppppp
MissTica

Answer:

It is exponential

3 0
2 years ago
Other questions:
  • Which is the best reason why 1 3/10 + 2 5/10 is not equal to 5?
    15·2 answers
  • Jasmine made a pitcher of lemonade. One pitcher contains glasses of lemonade. After Jasmine serves glasses of lemonade, how many
    11·2 answers
  • You flip a coin and roll the 20-sided figure. Find the probability of flipping tails and rolling at least a 14. The probability
    14·1 answer
  • Write 1,386 as the product of it prim fa
    6·1 answer
  • What is the volume of a right rectangular prism that is 3 meters by 4.5 meters
    10·1 answer
  • Jacqui earns $48 as a babysitter for 4 hours. How much money does she earn in two hours?​
    5·2 answers
  • Is (3, 8) a solution to this system of equations?<br><br><br> 18x − 8y = –10<br> 20x − 8y = –4
    11·1 answer
  • 3y - x = 2<br> 3y + x = 16
    7·1 answer
  • What is the value of x?<br><br><br><br> Enter your answer in the box.
    6·2 answers
  • Solve pls brainliest
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!