Answer: QN = 12
Step-by-step explanation: This quadrilateral is a paralelogram because its 2 opposite sides (NP and MQ) are parallel and the other 2 (MN and PQ) are congruent.
In paralelogram, diagonals bisect each other, which means QR = RN.
If QR = RN:
QR = 6
Then,
QN = QR + RN
QN = 6 + 6
QN = 12
<u>The diagonal QN of quadrilateral MNPQ is </u><u>QN = 12</u><u>.</u>
No because each time it goes up by (1) and in the last one it goes up (2 times) and then decreases (4 times) on the right.
Answer:
can u ;ut it in english plzz
Step-by-step explanation:
Answer:
x = 5
Step-by-step explanation:
Using the fact that line segments AB and BC are parts of the whole line segment AC, we can write the following equation:
AB + BC = AC
Now, using the given values, we can substitute in for the equation and solve for x:
AB + BC = AC
9 + 2x - 5 = x + 9
2x + 4 = x + 9
x = 5
Thus, we have found that for these sets of equations for these line segments, our value for x should be 5.
Cheers.
Answer:
Step-by-step explanation: