1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nalin [4]
3 years ago
10

Why is having a scientific model of the atom important? (2 points)

Physics
1 answer:
Katena32 [7]3 years ago
5 0

Answer:

Option D is the correct answer: The model allows us to predict how atoms will behave in certain situations.

You might be interested in
A mass M is hanging from a rope of length L and mass m. A student gives the mass a quick horizontal shake to set up a wave which
disa [49]

Answer:

Explanation:

Expression for velocity of wave produced in a hanging wire can be given  as follows

Velocity v = \sqrt{\frac{T}{m} }

where T is tension in wire and m is mass of wire per unit length.

In the given case

T = Mg + mg

= Mg

neglecting weight of rope

mass of the rope per unit length

= m / L

Velocity of wave

= \sqrt{\frac{Mg}{\frac{m}{L} } }

= \sqrt{\frac{MgL}{m} }

4 0
3 years ago
How do you find the acceleration of an object?
artcher [175]
Rearrange the equation F = ma to solve for acceleration<span>. You can change this formula around to solve for </span>acceleration<span> by dividing both sides by the mass, so: a = F/m. To find the </span>acceleration<span>, simply divide the force by the mass of the </span>object <span>being accelerated.

Hope i helped :)</span>
4 0
3 years ago
Read 2 more answers
How is resonance used in musical instruments?
9966 [12]

Answer:

The answer is B: to Amplify the sound

7 0
4 years ago
Read 2 more answers
A 3.0kg mass tied to a string
dem82 [27]

Answer:

\boxed{\sf Tension \ in \ the \ string \ (T) = 3 \ kN}

Given:

Mass (m) = 3.0 kg

Uniform speed (v) = 20 m/s

Length of string (r) = 40 cm = 0.4 m

To Find:

Tension in the string (T)

Explanation:

Tension (T) is the string will be equal to centripetal force (\sf F_c).

\boxed{ \bold{ T = F_c  =  \frac{m {v}^{2} }{r} }}

Substituting value of m, v & r in the equation:

\sf \implies T =  \frac{3 \times  {20}^{2} }{0.4}  \\  \\  \sf \implies T = \frac{3 \times 400}{0.4}  \\  \\  \sf \implies T =3 \times 1000 \\  \\  \sf \implies T =3000 \: N \\  \\ \sf \implies T =3 \: kN

\therefore

Tension in the string (T) = 3 kN

5 0
3 years ago
The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2
Vlada [557]

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × 10^{5} molecules cm^{-3}, the result will be that the reaction with OH will be 535 + (100 to about 4 × 10^{5} molecules cm^{-3}) times faster than the  reaction with Cl

Explanation:

4 0
3 years ago
Other questions:
  • Air resistance is a type of friction true or false
    15·2 answers
  • Where do most metamorphic processes take place?
    8·1 answer
  • Andrew has a four-year college loan for $20,000. The lender charges a simple interest rate of 5 percent. How much interest will
    9·1 answer
  • If a = 7 × 10−6 C/m4 and b = 1 m, find E at r = 0.6 m. The permittivity of a vacuum is 8.8542 × 10−12 C 2 /N · m2 . Answer in un
    12·1 answer
  • Force exerted by a person or object is called
    9·1 answer
  • What is the kinetic energy of a 2000 kg car traveling at a speed of 30 m/s (?65 mph)?
    6·1 answer
  • What is the RMS speed of Helium atoms when the temperature of the Helium gas is 206.0 K? (Possibly useful constants: the atomic
    5·2 answers
  • The tendency of two masses alone in the universe to<br> drift together is a result of
    14·1 answer
  • Mixing substances can result in a mixture, a solution, or a chemical reaction. In the table below:
    5·1 answer
  • Please answer the question below. No files, No Docs, or any Link. ONLY REAL ANSWER. Whoever, answers this question will get 50 p
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!