Answer:

Explanation:
Given that,
The velocity of an astronaut in a circular path, v = 16 m/s
The radius of the accelerator, r = 8 m
We need to find his centripetal acceleration. The formula that is used to find the centripetal acceleration is given by :

So, the required centripetal acceleration is
.
Answer:
The maximum electric field strength is 0.0144 V/m.
Explanation:
Given that,
Electric potential created in the heart, V = 3.6 mV
Distance, d= 0.25 m
Frequency of the the electromagnetic wave, f = 1 Hz
We need to find the maximum electric field strength created. We know that the electric potential is given by :

E is the maximum electric field strength

So, the maximum electric field strength is 0.0144 V/m. Hence, this is the required solution.
We use the kinematic equations,
(A)
(B)
Here, u is initial velocity, v is final velocity, a is acceleration and t is time.
Given,
,
and
.
Substituting these values in equation (B), we get
.
Therefore from equation (A),

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s
When you lay down your weight is distributed over a much larger surface area than while standing. You are putting a much greater force on a much smaller area standing.
3. Kinetic energy
4. Potential energy
5. Kinetic energy because it’s moving towards the waterfall otherwise there wouldn’t be a waterfall.
6. Kinetic energy
7. Kinetic energy
8. Potential energy
9. Potential energy
10. Kinetic energy