Answer:
Point-slope form: An equation of a straight line in the form
;
where
m is the slope of the line and
are the coordinates of a given point on the line.
Given the equation:
......[1]
On comparing with Point slope form equation we have;
m =
and point (6 , 2)
Now, find the Intercept of the given equation:
x-intercept: The graph crosses the the x-axis i.e,
Substitute y =0 in [1] and solve for x;
Using distributive property: ![a\cdot(b+c) = a\cdot b +a\cdot c](https://tex.z-dn.net/?f=a%5Ccdot%28b%2Bc%29%20%3D%20a%5Ccdot%20b%20%2Ba%5Ccdot%20c)
![-2 = -\frac{3}{4}x + \frac{18}{4}](https://tex.z-dn.net/?f=-2%20%3D%20-%5Cfrac%7B3%7D%7B4%7Dx%20%2B%20%5Cfrac%7B18%7D%7B4%7D)
Subtract
on both sides we get;
![-2-\frac{18}{4}= -\frac{3}{4}x + \frac{18}{4} -\frac{18}{4}](https://tex.z-dn.net/?f=-2-%5Cfrac%7B18%7D%7B4%7D%3D%20-%5Cfrac%7B3%7D%7B4%7Dx%20%2B%20%5Cfrac%7B18%7D%7B4%7D%20-%5Cfrac%7B18%7D%7B4%7D%20)
Simplify:
![-\frac{26}{4} = -\frac{3}{4}x](https://tex.z-dn.net/?f=-%5Cfrac%7B26%7D%7B4%7D%20%3D%20-%5Cfrac%7B3%7D%7B4%7Dx)
or
-26 = -3x
Divide both sides by -3 we get;
x = 8.667
x-intercept: (8.667, 0)
Similarly, for
y-intercept:
Substitute x = 0 in [1] and solve for y;
Add 2 on both sides we get;
![y-2+2=\frac{18}{4}+2](https://tex.z-dn.net/?f=y-2%2B2%3D%5Cfrac%7B18%7D%7B4%7D%2B2)
Simplify:
![y=\frac{26}{4} =6.5](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B26%7D%7B4%7D%20%3D6.5)
y-intercept: (0, 6.5)
Now, using these two points (8.667, 0) and (0, 6.5) you can plot the graph using line tool as shown below.