<u>Step</u><u> </u><u>1</u>
given
<u>Step</u><u> </u><u>2</u>
<u>Step</u><u> </u><u>3</u>
Reason: Reflexive property
<u>Step</u><u> </u><u>4</u>
ASA
Ok, so remember that the derivitive of the position function is the velocty function and the derivitive of the velocity function is the accceleration function
x(t) is the positon function
so just take the derivitive of 3t/π +cos(t) twice
first derivitive is 3/π-sin(t)
2nd derivitive is -cos(t)
a(t)=-cos(t)
on the interval [π/2,5π/2) where does -cos(t)=1? or where does cos(t)=-1?
at t=π
so now plug that in for t in the position function to find the position at time t=π
x(π)=3(π)/π+cos(π)
x(π)=3-1
x(π)=2
so the position is 2
ok, that graph is the first derivitive of f(x)
the function f(x) is increaseing when the slope is positive
it is concave up when the 2nd derivitive of f(x) is positive
we are given f'(x), the derivitive of f(x)
we want to find where it is increasing AND where it is concave down
it is increasing when the derivitive is positive, so just find where the graph is positive (that's about from -2 to 4)
it is concave down when the second derivitive (aka derivitive of the first derivitive aka slope of the first derivitive) is negative
where is the slope negative?
from about x=0 to x=2
and that's in our range of being increasing
so the interval is (0,2)
Given:
The given system of equations is:
To find:
The solution to this system of equations by graphing.
Solution:
We have,
The table of values for first equation is:
x y
0 1
1 -1
Plot the points (0,1) and (1,-1) on a coordinate plane and connect them a straight line.
The table of values for second equation is:
x y
0 -4
2 -3
Plot the points (0,-4) and (2,-3) on a coordinate plane and connect them a straight line.
The graphs of given equations are shown in the below figure.
From the below figure, it is clear that the lines intersect each other at point (2,-3). So, the solution of the given system of equations is (2,-3).
Therefore, the solution to this system of equations is:
x-coordinate: 2
y-coordinate: -3
Answer:
A= P(1+rt)
Step-by-step explanation:
Answer:
im pretty sure thats the answer