Answer:

Step-by-step explanation:
The formula for the length of a vector/line in your case.
![L = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} = \sqrt{[4 - (-1)]^2 + [2 -(-3)]^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}](https://tex.z-dn.net/?f=L%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%20%2B%20%28y_2-y_1%29%5E2%7D%20%3D%20%5Csqrt%7B%5B4%20-%20%28-1%29%5D%5E2%20%2B%20%5B2%20-%28-3%29%5D%5E2%7D%20%3D%20%5Csqrt%7B5%5E2%20%2B%205%5E2%7D%20%3D%20%5Csqrt%7B50%7D%20%3D%205%5Csqrt%7B2%7D)
+,-,=,>,<, and many more, lol i gave more than one :P
Answer:
40 degrees
Step-by-step explanation:
90 degrees-50 degrees is equal to 90 degrees.
Answer:
A 3^4 * 3^-4 / 3^6
C 1 / 3^6
Step-by-step explanation:
( 3^2 * 3^-2)
------------------- all the the power of 2
3^3
First simplify the numerator
We know a^b* a^c = a^(b*c)
( 3^(2+-2))
------------------- all to the power of 2
3^3
( 3^(0))
------------------- all to the power of 2
3^3
( 3^(0))
------------------- all to the power of 2
3^3
We know a^b/ a^c = a^(b-c)
3^(0-3) all to the power of 2
3^-3 all to the power of 2
3^-3 ^2
We know that a^b^c = a^(b*c)
3^(-3*2)
3^ -6
We know the negative exponent takes if from the numerator to the denominator
1 / 3^6
The other correct choice is A
3^4 * 3^-4 = 3^0 which is 1
1/3^6 is the same answer