Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
Before we dive into how electricity is used around the home it is worth putting household electricity use in perspective.
Household electricity use generally makes up about a third of total electricity consumption in most developed nations. Using data from the European Union we can give an example of how electricity demand is split among different sectors.
<span>
Read more at http://shrinkthatfootprint.com/how-do-we-use-electricity#DfE5FuAPpy6Z5TBH.99
</span>
Answer:
If an object is moving with a constant velocity, then by definition it has zero acceleration. So there is no net force acting on the object. The total work done on the object is thus 0 (that's not to say that there isn't work done by individual forces on the object, but the sum is 0 ).
Explanation:
In the middle, when the object was changing position at a constant velocity, the acceleration was 0. This is because the object is no longer changing its velocity and is moving at a constant rate.
Answer:
0.00417 kW/K or 4.17 W/K
Second law is satisfied.
Explanation:
Parameters given:
Rate of heat transfer, Q = 2kW
Temperature of hot reservoir, Th = 800K
Temperature of cold reservoir, Tc = 300K
The rate of entropy change is given as:
ΔS = Q * [(1/Tc) - (1/Th)]
ΔS = 2 * (1/300 - 1/800)
ΔS = 2 * 0.002085
ΔS = 0.00417 kW/K or 4.17 W/K
Since ΔS is greater than 0, te the second law of thermodynamics is satisfied.
☁️ Answer ☁️
annyeonghaseyo!
Your answer is:
True.
Several simple machines change the direction of the applied force. These include lever, fulcrum and the pulley.
Hope it helps.
Have a nice day hyung/noona!~  ̄▽ ̄❤️