Answer:
A. The shorter the distance the greater the force, so now the force would have increased because they haven't moved away from each other.
B. The force would decrease because they are now further apart.
C. the force wouldn't be as great as before but the force would still be high because they are not far apart from each other.
I hope this helps you( ◜‿◝ )♡
By definition, a halo is a part of a galaxy wherein it mainly consists of scattered stars forming bulges having a significantly spherical structure. In addition, the galactic structure is commonly made up of old and metal-rich stars forming clouds of gas and dirt at the spirals of a galaxy.
Answer:
c. 43 m/s
Explanation:
Given the following data;
Displacement, S = 90 meters
Time, t = 5.55 seconds
To find the initial velocity;
We would use the second equation of motion given by the formula;

Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
We know that acceleration due to gravity is -9.8m/s² because the direction is downward.
Substituting into the equation, we have;



Rearranging the equation, we have;



Initial velocity, u = 43.41 ≈ 41 m/s
Answer:17.44A
Explanation: Current density=I/Area
Area is given by 2.79mm^2=2.79×10^-6m^2
Current=I=current density ×Area=6.25×10^6 ×2.79×10^-6=17.44A