Using the theorem of kinetic energy
1/2mVf² - 1/2mVi²= WF + Wp, Wp=0
WF = F. AB, AB=5m and F= 40N, m=20kg
so the final kinetic is KEf= 1/2mVf² = WF =<span>F. AB= 40*5=200J
</span>
the final velocity is 1/2mVf² <span>=200, implies Vf= sqrt(20)=2sqrt(5)m/s</span>
Only if the temperature of both samples is the same.
When the temperature of water changes, so does its density.
That means that more or less mass takes up the same volume,
and the same volume can get heavier or lighter.
Answer: 3976N
Explanation:
Using the formula for calculating gravitational force between two masses, we have
F = GMm/r^2
Where G is the gravitational constant
M and m are the masses
r is the distance between the masses
F= 6.673 × 10-¹¹ × 5.98 × 10²⁴ × 63.5/ (6.37 × 10^6)^2
F= 2.533×10^16/6.37×10^12
F= 0.3976×10⁴N
F= 3976N
Answer:
measured at constant temperature and pressure
Hope this helps :)