F = ma
6.25 N = 0.4 kg · a
a = (6.25/0.4) m/s² since N=kg·m/s²
a = 15.625 m/s²
The answer is c) 15.6 m/s²
(Note that the mass of the soccer player is irrelevant.)
The answer is A. Have you ever heard the saying, opposites attract? That comes from magnetism. Like poles repel each other while opposites attract.
The image is missing (however it's not necessary to solve the problem).
The correct answer is A) decreases, because the gravitational force is inversely proportional to the square of the distance. In fact, the magnitude of the gravitational force between two object of mass M and m, at a distance d one from each other, is

where G is the gravitational constant. As can be seen from the formula, if the distance d between the two object increases, the intensity of the force decreases.
Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Answer:

Explanation:
<u>Given:</u>
- Diameter of the plates of the capacitor, D = 21 cm = 0.21 m.
- Distance of separation between the plates, d = 1.0 cm = 0.01 m.
- Minimum value of electric field that produces spark,

When the dimensions of the plate of the capacitor is comparatively much larger than the distance of separation between the plates, then, according to the Gauss' law of electrostatics, the value of the electric field strength in the region between the plates of the capacitor is given by

where,
= surface charge density of the plate of the capacitor =
.
= magnitude of the charge on each of the plate.
= surface area of each of the plate =
= electrical permittivity of free space, having value = 
For the minimum value of electric field that produces spark,

It is the maximum value of the magnitude of charge which can be added up to each of the plates of the capacitor.