The gardening kit costs $33.25. Multiply $95 by 0.35.
2x+4y=8
-2x -2x
4y=-2x+8
/4 /4 /4
y=-1/2x+2
Given:
Cost to build a bookshelf = $20
Cost to build a table = $45
Amount available to spend = $600
Let x = number of bookshelves built.
Let y = number of tables built.
The total number of bookshelves and tables = 18.
Therefore
x + y = 18.
That is,
y = 18 - x (1)
The total amount available to build x bookshelves and y tables = $600. Therefore
20x + 45y = 600
That is (dividing through by 5),
4x + 9y = 120 (2)
Substitute (1) into (2).
4x + 9(18 - x) = 120
4x + 162 - 9x = 120
-5x = -42
x = 8.4
From (1),obtain
y = 18 - 8.4 = 9.6
Because we cannot have fractional bookshelves and tables, we shall test values of x=8, 9 and y=9,10 for profit
Note: The profit is $60 per bookshelf and $100 per table.
If x = 8, then y = 18-8 = 10.
The profit = 8*60 + 10*100 = $1480
If x = 9, then y = 18-9 = 9.
The profit = 9*60 + 9*100 = $1440
The choice of 8 bookshelves and 10 tables is more profitable.
Answer: 8 bookshelves and 10 tables.
The fundamental theorem of algebra states that a polynomial with degree n has at most n solutions. The "at most" depends on the fact that the solutions might not all be real number.
In fact, if you use complex number, then a polynomial with degree n has exactly n roots.
So, in particular, a third-degree polynomial can have at most 3 roots.
In fact, in general, if the polynomial
has solutions
, then you can factor it as

So, a third-degree polynomial can't have 4 (or more) solutions, because otherwise you could write it as

But this is a fourth-degree polynomial.
I donnt think that there is a solution, but could be wrong