Answer:
no solutions
Step-by-step explanation:
10x+2y=42
5x+y=20
Multiply the second equation by -2 to use elimination
-2(5x+y)=20*-2
-10x -2y = -40
Add this to the first equation
10x+2y=42
-10x -2y = -40
--------------------------
0 = 2
This is never true. This means there are no solutions
M = - 1
- 2 = - 1 ( 2 ) + c
- 2 = - 2 + c
c = 0
y = - x
cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
Answer:
I'm pretty sure its 28?
Step-by-step explanation:
This is not a function. There are multiple outputs for the same input at
. A function only has 1 output for every input.