A number decreased by thirty seven or thirty seven less than a number
The area of the polygons compare to π in the way that as
more angles and sides are added to a polygon the polygon becomes closer to a
circle; the perimeter slowly changes to circumference. Π is used to find the
area and circumference of a circle, so as polygons come closer to becoming circles
π becomes more strongly associated to the polygon. You can even use π to find
the approximate area of a circle if you use the same formula (as you would to
find the area of a circle) on a polygon. Another way to go about it is like
this…
You can find the area of a circle if you know the circle’s
circumference by using these steps:
<span>1. Divide the
circumference by π to find the diameter of the circle.</span>
<span>2. Divide the
diameter by 2 to find the radius of the circle.</span>
<span>3. Now that you
have the radius you can use the formula Area= πr2 to find the area of the
circle.</span>
Answer:
Step-by-step explanation:
What this question is asking of you is what is the greatest common divisor of 12 and 15. Or, what is the biggest number that divides both 12 and 15.
in order to find this we have to split each number into it's prime components.
for 12 they are 2,2 and 3 (
2
⋅
2
⋅
3
=
12
)
and for 15 they are 3 and 5 (
3
⋅
5
=
15
)
Out of those two groups (2,2,3) and (3,5) the only thing in common is 3, so 3 is the greatest common divisor. That tells us that the greatest number of groups that can exist and have the same number of girls and the same number of boys for each group is 3.
Now to find out how many girls and boys there are going to be in each group we divide the totals by 3, so:
12
3
=
4
girls per group, and
15
3
=
5
boys per group.
(just as a thought exercise, if there were 16 boys, the divisors would have been (2,2,3) and (2,2,2,2), leaving us with 4 groups [
2
⋅
2
] of 3 girls [12/4] and 4 boys [16/4] )
Answer:
what is your question
Step-by-step explanation:
You did not post your question yet
Answer:
0 is an inflection point
1/4 is a local maximum.
Step-by-step explanation:
To begin with you find the first derivative of the function and get that

to find the critical points you equal the first derivative to 0 and get that

To find if they are maximums or local minimums you use the second derivative.

since
is neither an inflection point, and since
then 1/4 is a maximum.