1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
3 years ago
13

Solve 3/2^x-4=16 Two step equations

Mathematics
1 answer:
Lerok [7]3 years ago
4 0

the answer is

x = 40/3



You might be interested in
The owner of a bakery wants to know whether customers have any preference among 5 different flavors of muffin. A sample of 200 c
Troyanec [42]
So,, there are 5 different flavors. A total of 180 people were asked. Hence, the hypothesis that there is no significant difference is that every flavor gets 180/5=36 flavors. x^2=\sum{\frac{(x_i)^2}{m_i}}-n. In this case, mi is the proportion of the hypothesis, thus 36, n=180 and xi is the number of actual observations. Substituting the known quantities, we get that x^2=9. The degree of association is given by \sqrt{X^2}/ \sqrt{N(n-1)}. This yields around 0.10, much higher than our limit.
8 0
3 years ago
3. 28 – 18/ 2 * 3<br><br> / = divide <br> * = multiply
Gnoma [55]

Answer:I think it's -23.72

Step-by-step explanation:Step 1: Reduce the fraction

Step 2: Multiply

Step 3: Calculate

step 4: solution

4 0
3 years ago
Triangle abc has given the area: 2.95 , angle A: 80 and side b:2. Find the requested length, c
klio [65]
Can you support your question by uploading a drawing?
7 0
3 years ago
Make a factor tree for 24
Flura [38]
24 = 2 x 12, 24 = 8 x 3, 24 = 6 x 4, draw factor trees that all show 24 = 2 x 2 x 2 x 3 at the end.

Pls give me a brainliest if this helped thx
3 0
3 years ago
Read 2 more answers
2. The time between engine failures for a 2-1/2-ton truck used by the military is
OLEGan [10]

Answer:

A truck "<em>will be able to travel a total distance of over 5000 miles without an engine failure</em>" with a probability of 0.89435 or about 89.435%.

For a sample of 12 trucks, its average time-between-failures of 5000 miles or more is 0.9999925 or practically 1.

Step-by-step explanation:

We have here a <em>random variable</em> <em>normally distributed</em> (the time between engine failures). According to this, most values are around the mean of the distribution and less are far from it considering both extremes of the distribution.

The <em>normal distribution</em> is defined by two parameters: the population mean and the population standard deviation, and we have each of them:

\\ \mu = 6000 miles.

\\ \sigma = 800 miles.

To find the probabilities asked in the question, we need to follow the next concepts and steps:

  1. We will use the concept of the <em>standard normal distribution</em>, which has a mean = 0, and a standard deviation = 1. Why? With this distribution, we can easily find the probabilities of any normally distributed data, after obtaining the corresponding <em>z-score</em>.
  2. A z-score is a kind of <em>standardized value</em> which tells us the <em>distance of a raw score from the mean in standard deviation units</em>. The formula for it is: \\ z = \frac{x - \mu}{\sigma}. Where <em>x</em> is the value for the raw score (in this case x = 5000 miles).
  3. The values for probabilities for the standard normal distribution are tabulated in the <em>standard normal table</em> (available in Statistics books and on the Internet). We will use the <em>cumulative standard normal table</em> (see below).

With this information, we can solve the first part of the question.

The chance that a truck will be able to travel a total distance of over 5000 miles without an engine failure

We can "translate" the former mathematically as:

\\ P(x>5000) miles.

The z-score for x = 5000 miles is:

\\ z = \frac{5000 - 6000}{800}

\\ z = \frac{-1000}{800}

\\ z = -1.25

This value of z is negative, and it tells us that the raw score is 1.25 standard deviations <em>below</em> the population mean. Most standard normal tables are made using positive values for z. However, since the normal distribution is symmetrical, we can use the following formula to overcome this:

\\ P(z

So

\\ P(z

Consulting a standard normal table available on the Internet, we have

\\ P(z

Then

\\ P(z1.25)

\\ P(z1.25)

However, this value is for P(z<-1.25), and we need to find the probability P(z>-1.25) = P(x>5000) (Remember that we standardized x to z, but the probabilities are the same).

In this way, we have

\\ P(z>-1.25) = 1 - P(z

That is, the complement of P(z<-1.25) is P(z>-1.25) = P(x>5000). Thus:

\\ P(z>-1.25) = 1 - 0.10565

\\ P(z>-1.25) = 0.89435  

In words, a truck "<em>will be able to travel a total distance of over 5000 miles without an engine failure</em>" with a probability of 0.89435 or about 89.435%.

We can see the former probability in the graph below.  

The chance that a fleet of a dozen trucks will have an average time-between-failures of 5000 miles or more

We are asked here for a sample of <em>12 trucks</em>, and this is a problem of <em>the sampling distribution of the means</em>.

In this case, we have samples from a <em>normally distributed data</em>, then, the sample means are also normally distributed. Mathematically:

\\ \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})

In words, the samples means are normally distributed with the same mean of the population mean \\ \mu, but with a standard deviation \\ \frac{\sigma}{\sqrt{n}}.

We have also a standardized variable that follows a standard normal distribution (mean = 0, standard deviation = 1), and we use it to find the probability in question. That is

\\ z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ z \sim N(0, 1)

Then

The "average time-between-failures of 5000" is \\ \overline{x} = 5000. In other words, this is the mean of the sample of the 12 trucks.

Thus

\\ z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ z = \frac{5000 - 6000}{\frac{800}{\sqrt{12}}}

\\ z = \frac{-1000}{\frac{800}{\sqrt{12}}}

\\ z = \frac{-1000}{230.940148}

\\ z = -4.330126

This value is so low for z, that it tells us that P(z>-4.33) is almost 1, in other words it is almost certain that for a sample of 12 trucks, its average time-between-failures of 5000 miles or more is almost 1.

\\ P(z

\\ P(z

\\ P(z

The complement of P(z<-4.33) is:

\\ P(z>-4.33) = 1 - P(z or practically 1.

In conclusion, for a sample of 12 trucks, its average time-between-failures of 5000 miles or more is 0.9999925 or practically 1.

7 0
3 years ago
Other questions:
  • 1) Find the mean of the following numbers: 5, 11, 8, 8, 7, 4, 10, 9, 7, 7, 6​
    15·1 answer
  • Solve.<br> (3x)^2 - 7y^2 when x = 3 and y = 2
    6·2 answers
  • Is the length of a rectangle always more than the width?
    14·2 answers
  • Find the measure of the numbered angles in the rhombus. The diagram is not drawn to scale.
    13·2 answers
  • HELP!!! ASAP!!! WILL MARK BRANLIST!!!!!
    11·2 answers
  • Draw an area model and then solve using the standard algorithm
    14·1 answer
  • I wi mark you brainless and give point of this gets completed
    7·1 answer
  • A parking lot is 4/5 full. There are currently 80 cars in the parking lot. How many cars need to leave the parking lot to make t
    11·2 answers
  • Jamal is buying ingredients to make a large batch of granola to sell at a school fair. He buys 3.8 pounds of walnuts for $4.61 p
    5·1 answer
  • Clara’s gross monthly salary is $3,425
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!