Answer:
I think its 3 or 3.75 you can check
Step-by-step explanation:
<u>Given</u>:
Given that the isosceles trapezoid JKLM.
The measure of ∠K is 118°
We need to determine the measure of each angle.
<u>Measure of ∠L:</u>
By the property of isosceles trapezoid, we have;
![\angle K+\angle L=180^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20K%2B%5Cangle%20L%3D180%5E%7B%5Ccirc%7D)
![118^{\circ}+\angle L=180^{\circ}](https://tex.z-dn.net/?f=118%5E%7B%5Ccirc%7D%2B%5Cangle%20L%3D180%5E%7B%5Ccirc%7D)
![\angle L=62^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20L%3D62%5E%7B%5Ccirc%7D)
Thus, the measure of ∠L is 62°
<u>Measure of ∠M:</u>
By the property of isosceles trapezoid, we have;
![\angle L \cong \angle M](https://tex.z-dn.net/?f=%5Cangle%20L%20%5Ccong%20%5Cangle%20M)
Substituting the value, we get;
![62^{\circ}=\angle M](https://tex.z-dn.net/?f=62%5E%7B%5Ccirc%7D%3D%5Cangle%20M)
Thus, the measure of ∠M is 62°
<u>Measure of ∠J:</u>
By the property of isosceles trapezoid, we have;
![\angle J \cong \angle K](https://tex.z-dn.net/?f=%5Cangle%20J%20%5Ccong%20%5Cangle%20K)
Substituting the value, we get;
![\angle J =118^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20J%20%3D118%5E%7B%5Ccirc%7D)
Thus, the measure of ∠J is 118°
Hence, the measures of each angles of the isosceles trapezoid are ∠K = 118°, ∠L = 62°, ∠M = 62° and ∠J = 118°
Answer:
He has 4 10/12 wire left
Step-by-step explanation:
Answer:
(9-27)+9
=-18+9
<em><u>=-9</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em>