Find the gradient of the line segment between the points (7,-2) and (5,5).
1 answer:
Answer:-7/2
Step-by-step explanation:
y2 -y1/x2-x1=gradient
5--2/5-7
7/-2
7/-2
You might be interested in
Answer:
⇒y=32x+18
Step-by-step explanation:
![4[sin(x)]^2 - 2 = 0\implies 4[sin(x)]^2=2\implies [sin(x)]^2=\cfrac{2}{4}\implies [sin(x)]^2=\cfrac{1}{2} \\\\\\ sin(x)=\pm\sqrt{\cfrac{1}{2}}\implies sin^{-1}[sin(x)]=sin^{-1}\left( \pm\sqrt{\cfrac{1}{2}} \right)\implies x=sin^{-1}\left( \pm\sqrt{\cfrac{1}{2}} \right)](https://tex.z-dn.net/?f=4%5Bsin%28x%29%5D%5E2%20-%202%20%3D%200%5Cimplies%204%5Bsin%28x%29%5D%5E2%3D2%5Cimplies%20%5Bsin%28x%29%5D%5E2%3D%5Ccfrac%7B2%7D%7B4%7D%5Cimplies%20%5Bsin%28x%29%5D%5E2%3D%5Ccfrac%7B1%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20sin%28x%29%3D%5Cpm%5Csqrt%7B%5Ccfrac%7B1%7D%7B2%7D%7D%5Cimplies%20sin%5E%7B-1%7D%5Bsin%28x%29%5D%3Dsin%5E%7B-1%7D%5Cleft%28%20%5Cpm%5Csqrt%7B%5Ccfrac%7B1%7D%7B2%7D%7D%20%5Cright%29%5Cimplies%20x%3Dsin%5E%7B-1%7D%5Cleft%28%20%5Cpm%5Csqrt%7B%5Ccfrac%7B1%7D%7B2%7D%7D%20%5Cright%29)
![x=sin^{-1}\left( \pm\cfrac{\sqrt{1}}{\sqrt{2}} \right)\implies x=sin^{-1}\left( \pm\cfrac{1}{\sqrt{2}} \right)\implies x=sin^{-1}\left( \pm\cfrac{\sqrt{2}}{2} \right) \\\\[-0.35em] ~\dotfill\\\\ ~\hfill x=\cfrac{\pi }{4}~~,~~\cfrac{3\pi }{4}~~,~~\cfrac{5\pi }{4}~~,~~\cfrac{7\pi }{4}~\hfill](https://tex.z-dn.net/?f=x%3Dsin%5E%7B-1%7D%5Cleft%28%20%5Cpm%5Ccfrac%7B%5Csqrt%7B1%7D%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright%29%5Cimplies%20x%3Dsin%5E%7B-1%7D%5Cleft%28%20%5Cpm%5Ccfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright%29%5Cimplies%20x%3Dsin%5E%7B-1%7D%5Cleft%28%20%5Cpm%5Ccfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20x%3D%5Ccfrac%7B%5Cpi%20%7D%7B4%7D~~%2C~~%5Ccfrac%7B3%5Cpi%20%7D%7B4%7D~~%2C~~%5Ccfrac%7B5%5Cpi%20%7D%7B4%7D~~%2C~~%5Ccfrac%7B7%5Cpi%20%7D%7B4%7D~%5Chfill)
Check the picture below.
Answer:
7
Step-by-step explanation:
1, 1, 2, 4, 7, 8, 10, 15, 20
median = 7
395 *25% could also be interpreted as 395/4
395 = 98.75
4
Answer:
a. acute
b. right angle
c. acute
d. right angle
19. equilateral triangle