![\bf \cfrac{\sqrt[4]{63}}{4\sqrt[4]{6}}\qquad \begin{cases} 63=3\cdot 3\cdot 7\\ 6=2\cdot 3 \end{cases}\implies \cfrac{\sqrt[4]{3\cdot 3\cdot 7}}{4\sqrt[4]{2\cdot 3}}\implies \cfrac{\underline{\sqrt[4]{3}}\cdot \sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}\cdot \underline{\sqrt[4]{3}}} \\\\\\ \cfrac{\sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{3\cdot 7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B63%7D%7D%7B4%5Csqrt%5B4%5D%7B6%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0A63%3D3%5Ccdot%203%5Ccdot%207%5C%5C%0A6%3D2%5Ccdot%203%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%203%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%203%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%5Ccdot%20%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D)
![\bf \textit{now, rationalizing the denominator}\\\\ \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}\cdot \cfrac{\sqrt[4]{2^3}}{\sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21}\cdot \sqrt[4]{8}}{4\sqrt[4]{2}\cdot \sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21\cdot 8}}{4\sqrt[4]{2\cdot 2^3}}\implies \cfrac{\sqrt[4]{168}}{4\sqrt[4]{2^4}} \\\\\\ \cfrac{\sqrt[4]{168}}{4\cdot 2}\implies \cfrac{\sqrt[4]{168}}{8}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bnow%2C%20rationalizing%20the%20denominator%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%5Ccdot%20%5Csqrt%5B4%5D%7B8%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%5Ccdot%208%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%202%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5E4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Ccdot%202%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B8%7D)
and is all you can simplify from it.
so... all we did, was rationaliize it, namely, "getting rid of the pesky radical at the bottom", we do so by simply multiplying it by something that will raise the radicand, to the same degree as the root, thus the radicand comes out.
Answer:
4.5+2.4=6.9
Step-by-step explanation:
Fraction form: 69/10
If length of rectangle is 8 cm, breadth is 4 cm, side of square is 3 cm, base of triangle is 3 cm, then the area of figure will be 48.5
.
Given that length of rectangle is 8 cm, Breadth of rectangle is 4 cm,side of square is 3 cm,base of right angled triangle is 3 cm,height of triangle is 5 cm.
Area of figure=Area of rectangle+Area of square+Area of triangle
Area of rectangle=length*breadth
Area of square=Side*Side
Area of triangle=1/2 *Base*Height
Area of figure=8*4+3*3+1/2 *3*5
=32+9+1/2 *15
=41+15/2
=(82+15)/2
=97/2
=48.5 
Hence if length of rectangle is 8 cm, breadth is 4 cm, side of square is 3 cm, base of triangle is 3 cm, then the area of figure will be 48.5
.
Learn more about area at brainly.com/question/25292087
#SPJ9
If you’re asking for the answer, it’s 5