Answer:
They haven't yet, that is a myth. Rattlesnakes still have a rattle and probably always will.
Explanation:
Answer:
The correct answer is C and Engelmann conducted this experiment to prove relationship between algae and the rate of photosynthesis.
Explanation: First we must talk about 3 facts:
1) Prism scatters the white light into different wavelengths.
2) Photosynthesis, 6 carbon dioxide and 6 water molecules are consumed and 6 oxygen and 1 sugar molecule is synthesized using light energy.
6CO2 + 6H2O → C6H12O6 + 6O2
3) Aerobic bacteria breaks down sugar while using oxygen and produces water and carbon dioxide in simplified terms.
So with this experimental setup a researcher can understand the rate of the photosynthesis by increased accumulation of aerobic bacteria near algae in certain wavelengths since they uses oxygen and tend to move close to the oxygen source (<u>see figure</u>). In this experiment there are no ways to measure heat (B), there is no known relation between wavelength of light and aerobic respiration since it can happen even in the dark (A) and finally there are no ways to measure carbon dioxide (D).
Answer:
Autotrophs are organisms that use light energy or energy stored in chemical compounds to make their own food.
1st order heterotrophs are organisms that eat only plants
2nd order heterotrophs are organisms that eat herbivores
3rd order heterotrophs: organisms that eat herbivores and other carnivores
Top group: carnivores
Explanation:
Producers are named as such because they produce their own food either by photosynthesis or chemosynthesis. These organisms are called autotrophs and include plants.
There are various levels of consumers. The first is first order heterotrophs, which feed on the producers. These are herbivores and include, for example, a deer feeding on grass.
The next is second order heterotrophs, which feed on the first order heterotrophs. E.g. an owl eating a mouse. These are carnivores
The next layer are also carnivores, third order heterotrophs which eat second order heterotrophs, for example a lion eating a zebra.
When the bird is decomposed, more energy is transfered since its's bigger than a fly, a spider and the amount of fruit a fly can eat.
Hope it helped,
BioTeacher101