Beets, carrots, turnips, onions, radishes, and (the odd one out) celeriac.
Answer: Cell number one is an hypotonic solution, cell number two is an isotonic solution, and cell three is an hypertonic solution.
Explanation:
Cell number one which is a 98% water content is added the 100% water solution, water moves from low to high concentration. Therefore, the water moves from the solution into the cell, which is hypotonic.
Cell number two which is a 98% water content added with a 98% water solution. These two solutions are equal to one another, so the water does not move. This is isotonic.
Cell number three which is a 98% water content added with a 80% water solution. Water moves from high to low concentrations, so water moves from the cell to the solution. The water leaves the cell, which is an hypertonic.
Answer:
The correct answer is: Vacuoles in plants are much larger than those in animals.
Explanation:
The cell membrane of animals is not thicker than those in plants. In addition, plant cells have a thick cell wall surrounding the cell membrane that is made of cellulose and provides great protection against osmotic and mechanical stress.
Vacuoles in plants ARE much larger than vacuoles in animals, because plant cells r<u>equire much more water</u> and other substances to function properly. Animals, on the other hand, can ingest water and nutrients through food.
Animal cells DO have chromosomes. Every organism has chromosomes in their cells: prokaryotes have one single circular chromosome, while eukaryotes have many linear chromosomes (humans, for example, have 46 chromosomes).
Plant cells HAVE chloroplasts, as these organelles are crucial, since they participate in the process of photosynthesis - which is fundamental for the nourishment of the plant.
The statement that belongs in Kiko's report is Vacuoles in plants are much larger than those in animals.
Answer:
a vestigial structure
Explanation:
Vestigial structures are a rudimentary (or even functionless) version of a body part, but they have important functions in a closely correlated or evolutionarily close species, an example of which is the presence of eyes in fish of the genus Astyanax. The existence of these vestigial structures is strong evidence that evolution occurs in organisms, since this structure, today without much apparent function, may in the past have been extremely important to the ancestors of that species.