Answer:
<em>DF = 10 units</em>

<em>EG = 5.04</em>
Step-by-step explanation:
<u>Properties of Rhombus
es</u>
- All Sides Of The Rhombus Are Equal.
- The Opposite Sides Of A Rhombus Are Parallel.
- Opposite Angles Of A Rhombus Are Equal.
- In A Rhombus, Diagonals Bisect Each Other At Right Angles.
- Diagonals Bisect The Angles Of A Rhombus.
The image contains a rhombus with the following data (assume the center as point O):
DO = 5 units
GF = 5.6 units

4. Calculate DF
Applying property 4, diagonals bisect each other, thus the length of DF is double the length of DO, i.e. DF=2*5 = 10:
DF = 10 units
5. Calculate 
Applying property 4 in triangle EFO, the center angle is 90°, thus angle EFO has a measure of 90°-62°=28°.
Applying property 5, this angle is half of the measure of angle EFG and angle DFG has the same measure of 28°.

6. FG is the hypotenuse of triangle OFG, thus:




EG is double OG: OG=2*2.52=5.04
EG = 5.04
Answer:
1. 1 2.-1 3.-1 4.1 5.18 6.5
Step-by-step explanation:
that 8s answer gegegge
Step-by-step explanation:
1 kg = 1000 g
4.5 kg = 4.5 × 1000
4500 g
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ