Answer:
20/18
Step-by-step explanation:
Answer: x≤−7
Step-by-step explanation:
hope that helps
Answer:
The expression
represents the number
rewritten in a+bi form.
Step-by-step explanation:
The value of
is
in term of ![i^{2}[\tex] can be written as, [tex]i^{4}=i^{2}\times i^{2}](https://tex.z-dn.net/?f=i%5E%7B2%7D%5B%5Ctex%5D%20can%20be%20written%20as%2C%20%3C%2Fp%3E%3Cp%3E%5Btex%5Di%5E%7B4%7D%3Di%5E%7B2%7D%5Ctimes%20i%5E%7B2%7D)
Substituting the value,

Product of two negative numbers is always positive.

Now
in term of ![i^{2}[\tex] can be written as, [tex]i^{3}=i^{2}\times i](https://tex.z-dn.net/?f=i%5E%7B2%7D%5B%5Ctex%5D%20can%20be%20written%20as%2C%20%3C%2Fp%3E%3Cp%3E%5Btex%5Di%5E%7B3%7D%3Di%5E%7B2%7D%5Ctimes%20i)
Substituting the value,

Product of one negative and one positive numbers is always negative.

Now
can be written as follows,

Applying radical multiplication rule,


Now,
and 

Now substituting the above values in given expression,

Simplifying,

Collecting similar terms,

Combining similar terms,

The above expression is in the form of a+bi which is the required expression.
Hence, option number 4 is correct.
Since you don't want any leftover items, you have to find the greatest common factor (GCF) of both the crayons and bubbles. Since the highest common factor for both 28 and 12 is 4, the greatest number of gift bags you can make without any leftover items would be 4 gift bags.
Hope I could help.
It would be a direct variation.