Answer:
See below.
Step-by-step explanation:
Party A
y = x^2 + 1
For each value of x in the table, substitute x in the equation with that value and evaluate y.
x = -2: y = (-2)^2 + 1 = 4 + 1 = 5
x = -1: y = (-1)^2 + 1 = 1 + 1 = 2
Do the same for x = 0, x = 1, x = 2
x y
-2 5
-1 2
0 1
1 2
2 5
Part B
Look at points (-2, 5) and (-1, 2). The change in x from (-2, 5) to (-1, 2) is 1. The change in y is -3.
Now let's look at two other points which have a change in x of 1. Look at points (0, 1) and (1, 2). The change in x from (0, 1) to (1, 2) is 1. The change in y is 1.
You can see that for the first two points, a change of 1 in x produces a change of -3 in y, but for the second two points, the same change of 1 in x produce a change of 1 in y. Since the same change of x does not always produce the same change in y, the function is nonlinear.
Answer: A
<span>three million twenty eight thousand two=3,028,002
</span>
Answer:
There's nothing there I believe you forgot to add a link just add or create another question and i'll see what I can do :)
Step-by-step explanation:
Given:
The system of equations:


To find:
The number that can be multiplied by the second equation to eliminate the x-variable when the equations are added together.
Solution:
We have,
...(i)
...(ii)
The coefficient of x in (i) and (ii) are 1 and
respectively.
To eliminate the variable x by adding the equations, we need the coefficients of x as the additive inverse of each other, i.e, a and -a So, a+(-a)=0.
It means, we have to convert
into -1. It is possible if we multiply the equation (ii) by -5.
On multiplying equation (ii) by -5, we get
...(iii)
On adding (i) and (iii), we get

Here, x is eliminated.
Therefore, the number -5 can be multiplied by the second equation to eliminate the x-variable.