Answer:
a. Oxygen performs an essential role in the mentioned microbial cell in a manner that it takes part in the procedure of glycolysis, Krebs cycle, and electron transport chain, which eventually assists in the production of energy from food substrates and this generation of energy helps the cell to survive.
In the existence of oxygen, sugar gets dissociated through glycolysis to generate pyruvate, which again in the existence of oxygen is transformed into acetyl CoA. This moves into the Krebs cycle and gets dissociated to water and carbon dioxide generating ATP through ETC. This generation of ATP helps the cell to survive.
In low oxygen surrounding or in the absence of oxygen, some of the aerobic microbes can switch their respiratory pathway and carry on the process of fermentation and anaerobic respiration to produce energy and thrive. However, the mentioned microbial cell, which when it comes in contact with the low oxygen environment cannot carry out fermentation process and would die eventually.
b. This organism can be classified as obligate aerobes as they always need oxygen and do not possess the tendency to carry out the process of anaerobic respiration or fermentation under the absence of oxygenic environment.
Answer:
In addition to biology, evidence drawn from many different disciplines, including chemistry, geology, and mathematics, supports models of the origin of life on Earth. In order to determine when the first forms of life likely formed, the rate of radioactive decay can be used to determine the age of the oldest rocks (see optional problems C and D, below) exposed on Earth’s surface. These are found to be approximately 3.5 billion years old. The age of rocks can be correlated to fossils of the earliest forms of life. A. The graph compares times of divergence from the last common ancestor based on the fossil record with a "molecular time" constructed by comparing sequences of conserved proteins to determine a mutation rate (after Hedges and Kumar, Trends in Genetics, 2003). Explain how such a molecular clock could be refined to infer time or the evolution of prokaryotes. B. Using a molecular clock constructed from 32 conserved proteins, Hedges and colleagues (Battistuzzi et al., BMC Evol. Biol. 2004) estimated the times during which key biological processes evolved. A diagram based on their work is shown. Connect the time of the origin of life inferred from this diagram with the age of the oldest fossil stromatolites and the age of the oldest exposed rock to show how evidence from different scientific disciplines provides support for the concept of evolution. Evaluate the legitimacy of claims drawn from these different disciplines (biology, geology, and mathematics) regarding the origin of life on Earth. The oldest known rocks are exposed at three locations: Greenland, Australia, and Swaziland. The following application of mathematical methods provides essential evidence of the minimum age of Earth.
Explanation:
Acute HIV infection is the first phase of HIV infection. The early HIV test can detect HIV during the acute HIV phase. The best test for detecting HIV infection is the early HIV test (also known as NAAT/RNA testing)
I Hope This Helped!
Answer:
spherical (coccus), rodlike (bacillus), or curved (vibrio, spirillum, or spirochete).