1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
3 years ago
14

20×(5×(-16) ) = (20×5)×(-16)​

Mathematics
2 answers:
stich3 [128]3 years ago
7 0

Answer:

20×(5×(-16) = (20×5)×(-16)​

Step-by-step explanation:

They both equal -1600

dimulka [17.4K]3 years ago
5 0

Answer:  Associative Property of Multiplication

<u>Step-by-step explanation:</u>

When parenthesis change partners, it is Associative Property.

The operation is multiplication

NOTE: If 20 had moved from the left side of (5 x -16) to its right side, it would have been Commutative Property.

You might be interested in
From data gathered in the period 2008−2012, the yearly value of U.S. exports can be modeled by the function E(x) = −228x3 + 2,25
tester [92]

Answer:you got this:)

Step-by-step explanation:

5 0
2 years ago
The area of Asia is about 44600000 square kilometers. The area of Europe is about 9.94 x 10^6 square kilometers. What is the com
choli [55]
The answer is B . because when u add them u will get 14400000 which is 1.44*10^7sq kilometers. did this help you?
7 0
3 years ago
Read 2 more answers
Find the surface area of the composite figure. 6cm 5 cm 20cm 4cm 12cm 6cm​
Crazy boy [7]

Answer:

644 cm²

Step-by-step explanation:

Surface area of the composite figure = surface area of the large rectangular prism + surface area of the small rectangular prism - 2(area of the surface of the small rectangular prism that joins the larger prism)

✔️Surface area of the large rectangular prism = 2(LW + LH + WH)

L = 6 cm

W = 5 cm

H = 20 cm

Surface area = 2(6*5 + 6*20 + 5*20)

= 500 cm²

✔️Surface area of the small rectangular prism = 2(LW + LH + WH)

L = 6 cm

W = 4 cm

H = 12 cm

Surface area = 2(6*4 + 6*12 + 4*12)

= 288 cm²

✔️area of the surface of the small rectangular prism that joins the larger prism = L*W

L = 12 cm

W = 6 cm

Area = 12*6

= 72 cm²

✅Surface area of the composite figure = 500 + 288 - 2(72)

= 644 cm²

7 0
2 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
You have $50
Yakvenalex [24]

50+5x=total profit. To get 10% of 50 you would multiply .1x50= 5. X would be the amount of days past so 10th day = $100 total but $50 profit and 30th day = $200 total but $150 profit

8 0
3 years ago
Other questions:
  • If p is prime and n is even such as that p+n =47 and p×n=210 what is the value of n?
    9·1 answer
  • Thirty and 25 hundredths in decimal form
    10·1 answer
  • The length of a rectangle is four times it’s width. If the perimeter of the rectangle is 100ft find it’s area
    5·1 answer
  • Rectangle floor measures 10 1/8 by 13 3/4 feet. If Mary buys 150 ft.² of carpet, will she have enough carpet to cover the floor?
    14·1 answer
  • A farmer is planting some marigolds in a row. The row is 2 yards long. The flowers must be spaced ⅓ yard apart so they will have
    5·1 answer
  • Determine the range of the inverse of f(x) = 2x + 1
    7·2 answers
  • Does the table represent a function or not?"
    5·1 answer
  • My Christmas Tree is 7 feet tall and has a radius at the bottom of 4 feet. What is the total Volume of my Christmas Tree?​
    15·1 answer
  • 5. When y varies directly with x, the value of y = -2 when x = 4. What is the value of y when x = 8?
    15·1 answer
  • If you earn $634.38 for a 29-hour work week, how much would you earn for a 40-hour work week at the same hourly rate?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!