An educated guess that is aslo posed as a tentative explanation is called a hypothesis.
Answer:
Phytoplankton are essential for atmospheric and climate regulation.
Explanation:
Phytoplankton are autotrophs, they use solar energy, along with inorganic carbon and water to produce their own food source via photosynthesis. During photosynthesis, they also produce oxygen, integral for the planet's atmospheric composition.
At their large biomass, phytoplankton contribute to a majority of the oxygen used by consumers (most animals).
6 CO2 + 6 H2O + light → C6H12O6 + 6 O2
Carbon Dioxide + Water + Light Glucose + Oxygen
Along with fossil fuels, human agricultural practices have contributed large amounts of CO2 to the atmosphere, This causes global warming, a major environmental crisis- global warming also leads to landmass loss, biosphere disruption and reduces biodiversity in mass extinction events.
Phytoplankton carbon cycling produces organic matter which functions as carbon sinks in our oceans. Thus, as phytoplankton use large amounts of CO2, they help combat warming cycles, along with producing O2 in atmospheric and climate regulation.
Answer:In 2019, the United States consumed about 31.01 trillion cubic feet (Tcf) of natural gas.
Explanation:
Explanation:
The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed
The mass of the sample would be 90 grams