Measure of the angle m ∠ RQS = 58 ° for the given circle with arc RS subtending m ∠RPS=14 x + 46 ° at the center P and m ∠ RQS = 3 x + 43 ° at Q, on the circumference.
As given in the question,
Measure of the angle is given by :
m ∠ RPS=14 x + 46 °
m ∠ RQS=3 x + 43 °
m ∠ RPS = twice m ∠RQS (angle subtended at center of the circle)
14 x +46 =2(3 x + 43)
⇒ 14x + 46 = 6x +86
⇒ 14x-6x=86-46
⇒8x=40
⇒ x=5°
m ∠ RQS = (3 x + 43) °
=[3(5) + 43 ]°
= 58°
Therefore, measure of the angle in the given circle m ∠RQS is equal to the 58 °
Learn more about angle here
brainly.com/question/28451077
#SPJ1
Answer:
4.5 m
Step-by-step explanation:
The area of two similar triangles are 75 m2 and 300 m2. This gives you the scale factor of the triangles:
![\dfrac{A_{small}}{A_{large}}=k^2\Rightarrow k^2 =\dfrac{75}{300}=\dfrac{3}{12}=\dfrac{1}{4}\Rightarrow k=\dfrac{1}{2}.](https://tex.z-dn.net/?f=%5Cdfrac%7BA_%7Bsmall%7D%7D%7BA_%7Blarge%7D%7D%3Dk%5E2%5CRightarrow%20k%5E2%20%3D%5Cdfrac%7B75%7D%7B300%7D%3D%5Cdfrac%7B3%7D%7B12%7D%3D%5Cdfrac%7B1%7D%7B4%7D%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7B2%7D.)
Then you can find the length of the corresponding side:
![\dfrac{side_{small}}{side_{large}}=k\Rightarrow =\dfrac{side_{small}}{9}=\dfrac{1}{2},\ side_{small}=\dfrac{9}{2}=4.5\ m.](https://tex.z-dn.net/?f=%5Cdfrac%7Bside_%7Bsmall%7D%7D%7Bside_%7Blarge%7D%7D%3Dk%5CRightarrow%20%3D%5Cdfrac%7Bside_%7Bsmall%7D%7D%7B9%7D%3D%5Cdfrac%7B1%7D%7B2%7D%2C%5C%20side_%7Bsmall%7D%3D%5Cdfrac%7B9%7D%7B2%7D%3D4.5%5C%20m.)
Answer:
5x^2-18x -8
Step-by-step explanation:
Answer:
moo (seriously tho this is a joke)
Step-by-step explanation: