1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
9

Find the common difference of the sequence shown. 1/2, 1/4, 0, ... -1/8 -1/4 -1/2

Mathematics
1 answer:
DENIUS [597]3 years ago
8 0
Common difference in Arithmetic sequences is defined as the fixed amount <span>referring to the fact that the difference between two successive terms yields the constant value that was added. In order to know the common difference of the given sequence above, we just have to deduct 1/2 from 1/4 and the answer is -1/4. Therefore, the correct answer would be the third option. Hope this answer helps.</span>
You might be interested in
The answer to this question here 0.1x=0.2(x+2) <br> x=-4
Elenna [48]

Answer:

the answer is 76

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
ASAP 30 + Brainliest <br><br> Please only solve 2 - 5
hichkok12 [17]

<u>QUESTION 2a</u>


We want to find the area of the given right angle triangle.


We use the formula

Area=\frac{1}{2}\times base\times height

The height of the triangle is =a cm.

The base is 12cm.


We substitute the given values to obtain,


Area=\frac{1}{2}\times 12\times a cm^2.

This simplifies to get an expression for the area to be

Area=6a cm^2.





<u>QUESTION 2b</u>


The given diagram is a rectangle.


The area of a rectangle is given by the formula

Area=length \times width


The length of the rectangle is l=7cm and the width of the rectangle is w=ycm.


We substitute the values to obtain the area to be


Area=7 \times y


The expression for the area is

Area=7y


<u>QUESTION 2c.</u>


The given diagram is a rectangle.


The area of a rectangle is given by the formula

Area=length \times width


The length of the rectangle is l=2x cm and the width of the rectangle is w=4 cm.


We substitute the values to obtain the area to be


Area=2x \times 4


The expression for the area is

Area=8x


<u>QUESTION 2d</u>


The given diagram is a square.

The area of a square is given by,

Area=l^2.


where l=b m is the length of one side.


The expression for the area is

Area=b^2 m^2


<u>QUESTION 2e</u>

The given diagram is an isosceles triangle.


The area of this triangle can be found using the formula,

Area=\frac{1}{2}\times base\times height.

The height of the triangle is 4cm.


The base of the triangle is 6a cm.


The expression for the area is

Area=\frac{1}{2}\times 6a \times 4cm^2


Area=12a cm^2


<u>QUESTION 3a</u>

Perimeter is the distance around the figure.

Let P be the perimeter, then

P=x+x+x+x

The expression for the perimeter is

P=4x mm


<u>QUESTION 3b</u>

The given figure is a rectangle.


Let P, be the perimeter of the given figure.

P=L+B+L+B


This simplifies to

P=2L+2B

Or

P=2(L+B)


<u>QUESTION 3c</u>

The given figure is a parallelogram.

Perimeter is the distance around the parallelogram

Perimeter=3q+P+3q+P

This simplifies to,


Perimeter=6q+2P

Or

Perimeter=2(3q+P)



<u>QUESTION 3d</u>

The given figure is a rhombus.

The perimeter is the distance around the whole figure.


Let P be the perimeter. Then

P=5b+5b+5b+5b


This simplifies to,

P=20b mm


<u>QUESTION 3e</u>

The given figure is an equilateral triangle.

The perimeter is the distance around this triangle.

Let P be the perimeter, then,

P=2x+2x+2x


We simplify to get,


P=6x mm


QUESTION 3f

The figure is an isosceles triangle so two sides are equal.


We add all the distance around the triangle to find the perimeter.


This implies that,


Perimeter=3m+5m+5m


Perimeter=13m mm



<u>QUESTION 3g</u>

The given figure is a scalene triangle.

The  perimeter is the distance around the given triangle.

Let P be the perimeter. Then

P=(3x+1)+(2x-1)+(4x+5)


This simplifies to give us,


P=3x+2x+4x+5-1+1


P=9x+5


<u>QUESTION 3h</u>

The given figure is a trapezium.

The perimeter is the distance around the whole trapezium.

Let P be the perimeter.

Then,

P=m+(n-1)+(2m-3)+(n+3)


We group like terms to get,

P=m+2m+n+n-3+3-1

We simplify to get,

P=3m+2n-1mm


QUESTION 3i

The figure is an isosceles triangle.

We add all the distance around the figure to obtain the perimeter.

Let P be the perimeter.


Then P=(2a-b)+(a+2b)+(a+2b)


We regroup the terms to get,

P=2a+a+a-b+2b+2b

This will simplify to give us the expression for the perimeter to be

P=4a+3bmm.


QUESTION 4a

The given figure is a square.


The area of a square is given by the formula;

Area=l^2

where l=2m is the length of one side of the square.


We substitute this value to obtain;

Area=(2m)^2


This simplifies to give the expression of the area to be,

Area=4m^2


QUESTION 4b

The given figure is a rectangle.


The formula for finding the area of a rectangle is

Area=l\times w.

where l=5a cm is the length of the rectangle and w=6cm is the width of the rectangle.

We substitute the values into the formula to get,

Area =5a \times 6


Area =30a cm^2


QUESTION 4c


The given figure is a rectangle.


The formula for finding the area of a rectangle is

Area=l\times w.

where l=7y cm is the length of the rectangle and w=2x cm is the width of the rectangle.

We substitute the values into the formula to get,

Area =7y \times 2x

The expression for the area is

Area =14xy cm^2


QUESTION 4d

The given figure is a rectangle.


The formula for finding the area of a rectangle is

Area=l\times w.

where l=3p cm is the length of the rectangle and w=p cm is the width of the rectangle.

We substitute the values into the formula to get,

Area =3p \times p

The expression for the area is

Area =3p^2 cm^2




See attachment for the continuation


6 0
3 years ago
Read 2 more answers
A gardener has 520 feet of fencing to fence in a rectangular garden. One side of the garden is bordered by a river and so it doe
Bond [772]

The shortest side is 130 feet, the longest side is 260 feet and the greatest possible area is 33800 square feet

<h3>What dimensions would guarantee that the garden has the greatest possible area?</h3>

The given parameter is

Perimeter, P = 520 feet

Represent the shorter side with x and the longer side with y

One side of the garden is bordered by a river:

So the perimeter is:

P = 2x + y

Substitute P = 520

2x + y = 520

Make y the subject

y = 520 - 2x

The area is

A = xy

Substitute y = 520 - 2x in A = xy

A = x(520 - 2x)

Expand

A = 520x - 2x^2

Differentiate

A' = 520 - 4x

Set to 0

520 - 4x = 0

Rewrite as:

4x= 520

Divide by 4

x= 130

Substitute x= 130 in y = 520 - 2x

y = 520 - 2 *130

Evaluate

y = 260

The area is then calculated as:

A = xy

This gives

A = 130 * 260

Evaluate

A = 33800

Hence, the shortest side is 130 feet, the longest side is 260 feet and the greatest possible area is 33800 square feet

Read more about area at:

brainly.com/question/24487155

#SPJ1

7 0
1 year ago
There are 9 students in a class: 7 boys and 2 girls.
Crank

Answer: 9/7

Step-by-step explanation:

6 0
3 years ago
What is 373827+3562828
Mila [183]

Answer:

Your answer would be 3,936,655

8 0
2 years ago
Read 2 more answers
Other questions:
  • Can you solve this
    8·2 answers
  • Rectangle swim pool was 9 meters wide with surface area of 90 square meters. What's length of the pool?
    15·2 answers
  • 7) Tim's high school played 11 football games this year. The team won most of
    14·2 answers
  • Please help!!!!!!!!!!!!!!!!!!
    6·1 answer
  • Which is larger? 1/4 or 2/8
    12·2 answers
  • The windows of a downtown office building are arranged so that each floor has 6 fewer windows than the floor below it. If the gr
    7·2 answers
  • Help me again I’m lazy again and giving brainliest if correct number 12
    10·1 answer
  • Help I will give you brainlist with 20 points
    14·1 answer
  • What are the intercepts of y = -9x + 3?
    11·1 answer
  • Regress smoker on cubic polynomials of age, using a linear probability model. What is the p-value for testing the hypothesis tha
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!