1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
14

In how many ways can president, vice-president, and secretary be chosen from 9 students?

Mathematics
2 answers:
Dominik [7]3 years ago
4 0

Answer:

The answer is 27

Step-by-step explanation:

This is because each person can have up to three roles, and there are 9 students. So you can form an array, or a table to show your values. so if you have 9 rows and 3 coulombs and you can have 27 crosses in the array.  

gogolik [260]3 years ago
4 0

Answer:

Step-by-step explanation:in how many ways can a president, vice president, and a secretary be chosen?... is it 12X11X10. Permutation of n things taken r at a time: nPr=n!/(n-r)! 12P3=12*11*10*9!/9!= 12*11*10=1320 ways.

You might be interested in
Answer without referring back to the text. Fill in the blank. (Enter your answers as a comma-separated list. Enter all answers u
Brilliant_brown [7]

Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.

Write me here and I will give you my phone number - *pofsex.com*

My nickname - Lovely

7 0
4 years ago
Classify Angle 3 & Angle 4 by choosing the correct term from the choices below.
nika2105 [10]

\qquad \qquad\huge \bf༆ Answer ༄

The given angles 3 and 4 shares a common arm, therefore the angles are known as Adjacant Angles

6 0
2 years ago
Read 2 more answers
Plz help me find the unit rate and explain.
Paladinen [302]
(4/5)/(2/3)=4/5*3/2=12/10=1 1/5
two fractions dividing is the same as two fractions multiplying with the second fraction flipped around
1 1/5 yards per second
5 0
3 years ago
Please answer this as soon as possible
skelet666 [1.2K]

Answer:x=-8

Step-by-step explanation:

12(x/4+2/3)=12(x/6)

3x+8=2x

3x-2x=-8

x=-8

3 0
3 years ago
Read 2 more answers
Lim n-> infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Other questions:
  • Which expression of the gcf of the terms of the polynomial 16x^3+28x^5y
    9·1 answer
  • How many variable terms are in the expression 3x^3y+5x^2-4y+z+9
    7·1 answer
  • The weights for newborn babies is approximately normally distributed with a mean of 6.2 pounds and a standard deviation of 2 pou
    8·1 answer
  • Find the measure of the supplement and the complement of each angle.
    12·1 answer
  • Write an equation in slope intercept form for the graph (-3,3) (3,-1)
    14·1 answer
  • To show that triangle TRK= triangle TUK by the SAS postulate, what additional information is necessary?
    8·1 answer
  • The latest demand equation for your Yoda vs. Alien T-shirts is given by: q = −40x + 800 where q is the number of shirts you can
    11·1 answer
  • What is 7x1/3 tysm if u help
    14·1 answer
  • Which of this expressions are equivalent to the one below? Check all that apply.
    11·1 answer
  • 1 x2 + 7x + 12 = ________________________
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!