Answer:
<u>Passive transport</u>: It does not need any energy to occur. Happens in favor of an electrochemical gradient. Simple diffusion and facilitated diffusion are kinds of passive transport.
<u>Simple diffusion</u>: molecules freely moves through the membrane.
<u>Facilitated diffusion</u>: molecules are carried through the membrane by channel proteins or carrier proteins.
<u>Active transport</u> needs energy, which can be taken from the ATP molecule (<u>Primary active transport</u>) or from a membrane electrical potential (<u>Secondary active transport</u>).
Explanation:
- <u>Diffusion</u>: This is a pathway for some <em>small polar hydrophilic molecules</em> that can<em> freely move through the membrane</em>. Membrane´s permeability <em>depends</em> on the <em>size of the molecule</em>, the bigger the molecule is, the less capacity to cross the membrane it has. Diffusion is a very slow process and to be efficient requires short distances and <em>pronounced concentration gradients</em>. An example of diffusion is <em>osmosis</em> where water is the transported molecule.
- <u>Facilitated diffusion</u>: Refers to the transport of <em>hydrophilic molecules</em> that <em>are not able to freely cross the membrane</em>. <em>Channel protein</em> and many <em>carrier proteins</em> are in charge of this <em>passive transport</em>. If uncharged molecules need to be carried this process depends on <em>concentration gradients</em> and molecules are transported from a higher concentration side to a lower concentration side. If ions need to be transported this process depends on an <em>electrochemical gradient</em>. The <em>glucose</em> is an example of a hydrophilic protein that gets into the cell by facilitated diffusion.
<em>Simple diffusion</em> and <em>facilitated diffusion</em> are <u>passive transport</u> processes because the cell <u><em>does not need any energy</em></u> to make it happen.
- <u>Active transport</u> occurs <em>against the electrochemical gradient</em>, so <u><em>it does need energy to happen</em></u>. Molecules go from a high concentration side to a lower concentration side. This process is always in charge of <em>carrier proteins</em>. In <u>primary active transport</u> the <em>energy</em> needed <em>comes from</em> the <em>ATP</em> molecule. An example of primary active transport is the <em>Na-K bomb</em>. In <u>secondary active transport</u>, the<em> energy comes from</em> the <em>membrane electric potential</em>. Examples of secondary active transport are the carriage of <em>Na, K, Mg metallic ions</em>.
Answer:
Darwin and Lamarck's theory is different but they were also very similar. Both of them thought that the organism changed, and they are very helpful for the organism to survive. These characteristics are also passed to their young generation.
Darwin theory state that an organism gets the helpful variation before the changes in the environment, Lamarck's theory said that organism gets variation after the change in the environment.
Lamarck's stated that giraffe got long neck when the food on the ground ran out. In order to get the food they stretch out their neck to get food. Darwin thought organism changed by chance, at the time when they are born and before the change in the environment.
The answer is D: poaching, since it harms wildlife and destroys ecosystems.
Answer:
They are inter-related with each other.
Explanation:
There is a great relationship present between evidence, conclusions and theories because evidences are those materials due to which a hypothesis can be verified and we can draw conclusion. When we repeat the same experiment and find out the same conclusion so it becomes theory and when these theories can't change with the passage of time, it becomes law. So evidence, conclusions and theories are inter-related to each other.
<h2>Answer is option "b"</h2>
Explanation:
- Non-ionizing radiation is radiation that has a lower frequency, or longer wavelength, in the EMR spectrum. These frequencies range from that of power lines, radios, and cell phones, up to visible light. Non-ionizing radiation is not powerful enough to break the chemical bonds in molecules. In general, it is not harmful to human health as radiation per se, but could be harmful in terms of the transfer of heat energy. An example of an emitter of non-ionizing radiation is a microwave oven.
- Non-ionizing radiation is less harmful because the rays carry much less energy. Radio waves, light, and even heat are examples of non-ionizing radiation. For the most part, these kinds of radiation do not cause any damage. However, ultraviolet light is a kind of non-ionizing radiation that can be harmful - it can cause mutations in DNA
- Non-ionizing radiation is limited to the lower energy range electromagnetic radiation, which is more commonly known as light. However, the light we can see with our eyes, visible light, is only a small section of the electromagnetic radiation spectrum as seen here
- Hence the right answer is option "b"