The all or nothing law of action potentials mainly talks about how the axons in the neurons only fire when there is enough action potential to fire. If there is not enough action potential, then the neuron will not be able to send signals because the action potential does not fire because of the deficit.
Answer:
Axons with high diameter, and myelinated will conduct action potential faster.
Axons with low diameter but myelinated will be relatively slow in the speed of action potential transmission
Axons with high diameter and unmyelinated will be relatively slow in action potential transmission.
Axons with low diameter, and unmyelinated will conduct action potential slowly .
Explanation:
Diameter of Axon affects conduction speed of Action Potential; the thick axons with high diameter conducts action potential at a faster speed than thin neurons. This is because of the less resistance to the transmission of action potential along the thick axon. However, thin neurons with lower diameter has more resistance to the action potential conduct along the axon, thus the speed of transmission is slow.
Myelinated neuron transmits action potential faster because of jumping of action potential at the nodes of Ranvier where there is highest concentration of all channel proteins and pump proteins, Therefore action potential is conducted at a faster rate as it jumps from one node to another. This is salutatory conduction. It increases the conduct about 50 times compare to unmyelinated neuron. In neuron of human it increases the speed to 100ms-1
.Conversely, unmyelinated neurone conducts action potential slowly. About 0.5ms-1 . This is because no salutatory conduction takes place because there is no myelin interruption as Nodes of Ranvier
The correct answer is <span>the reproduction of new cells </span>
Answer:
They all have cholorophyll
Explanation:
Or we can say they carry out photodynthesis and make food.
See, all the pictures are green, this green pigment (colour ) is cholorophyll.
The first, second and fourth are pictures of leaves [which makes food] and the third picture is a illustration of the mitochondria.
Hope it helps!
Answer:
The proteins will be transported through exocytosis; the carbon dioxide will diffuse through the membrane.
Explanation:
Diffusion is the passive transport of substances down their concentration gradient. The process moves the substances from the region of higher concentration to that of lower concentration. CO2 is a small molecule and does not have any charge. Small, uncharged molecules can diffuse through the lipid bilayer of the cell membrane. Therefore, CO2 can exit a cell by simple diffusion.
On the other hand, proteins are too large to be transported by diffusion across the cell membrane. The proteins are transported by exocytosis. During exocytosis of proteins, membrane-bound vesicles are formed inside the cell. These vesicles carry proteins in them and are called secretory vesicles. The membrane of the vesicles fuse with the cell membrane of cells and transport the proteins outside the cell.