I'll assume the ODE is

Solve the homogeneous ODE,

The characteristic equation

has roots at
and
. Then the characteristic solution is

For nonhomogeneous ODE (1),

consider the ansatz particular solution

Substituting this into (1) gives

For the nonhomogeneous ODE (2),

take the ansatz

Substitute (2) into the ODE to get

Lastly, for the nonhomogeneous ODE (3)

take the ansatz

and solve for
.

Then the general solution to the ODE is

Answer:
10
Step-by-step explanation:
2x+5=25
25-5=20
20/2=10
Answer:
a) For the first part we have a sample of n =10 and we want to find the degrees of freedom, and we can use the following formula:

d.9
b) 
a.15
c) For this case we have the sample size n = 25 and the sample variance is
, the standard error can founded with this formula:

Step-by-step explanation:
Part a
For the first part we have a sample of n =10 and we want to find the degrees of freedom, and we can use the following formula:

d.9
Part b
From a sample we know that n=41 and SS= 600, where SS represent the sum of quares given by:

And the sample variance for this case can be calculated from this formula:

a.15
Part c
For this case we have the sample size n = 25 and the sample variance is
, the standard error can founded with this formula:

Answer:
I get 17.
Step-by-step explanation:
Reduce the fraction:
3 ( 3 + 4 ) - 4
Add the numbers:
3 x 7 - 4
Multiply the numbers:
21 - 4
Subtract the numbers:
17