Simone would have to bike for at least 34 miles to reach $510
Combining the like terms, the simplified polynomials are given as follows:
a) 4x² - 14x + 17
b) -5x² - 20x + 8
<h3>How are polynomials simplified?</h3>
Polynomials are simplified combining the like terms, that is, adding these numbers with the same variable.
Item a:
4(x - 2)(x + 1) - 5(2x - 5)
Applying the distributive property:
4(x² - x - 2) - 10x + 25
4x² - 4x - 8 - 10x + 25
Combining the like terms:
4x² - 4x - 10x - 8 + 25
4x² - 14x + 17
Item b:
-5(x + 2)² + 28
-5(x² + 4x + 4) + 28
-5x² - 20x - 20 + 28
-5x² - 20x + 8
More can be learned about the simplification of polynomials at brainly.com/question/24450834
#SPJ1
Answer:
1. Opposite
2. angle-side-angle criterion
Step-by-step explanation:
Since ABCD is a parallelogram, the two pairs of <u>(opposite)</u> sides (AB¯ and CD¯, as well as AD¯ and BC¯) are congruent. Then, since ∠9 and ∠11 are vertical angles, it can be concluded that ∠9≅∠11. Since ABCD is a parallelogram, AB¯∥CD¯. Since ∠2 and ∠5 are alternate interior angles along these parallel lines, the Alternate Interior Angles Theorem allows that ∠2≅∠5. Since two angles of △AEB are congruent to two angles of △CED, the Third Angles Theorem supports that ∠8≅∠3. Therefore, using the <u>(angle-side-angle criterion)</u>, it can be stated that △AEB≅△CED. Then, applying the definition of congruent triangles, it can be stated that AE¯≅CE¯, which makes E the midpoint of AC¯. Use a similar argument to prove that △AED≅△CEB; then it can be concluded that E is also the midpoint of BD¯. Since the midpoint of both line segments is the same point, the segments bisect each other by definition. Match each number (1 and 2) with the word or phrase that correctly fills in the corresponding blank in the proof.
A parallelogram posses the following features:
1. The opposite sides are parallel.
2. The opposite sides are congruent.
3. It has supplementary consecutive angles.
4. The diagonals bisect each other.
It is 1.55 times the value of the second number.