1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
3 years ago
8

The purple shape is a dilation of the black shape. What is the scale factor of the dilation?

Mathematics
2 answers:
Ilya [14]3 years ago
8 0
The answer is 1/2. The purple shape is half the size of the black shape.
AnnZ [28]3 years ago
4 0

Answer:

Scale factor = \frac{1}{2}

Explanation:

The purple shape is a dilation of the black shape.

A dilation is a transformation that produces an image that is the same shape as the original, but is a different size.

Now findd the scale factor.

If given two shapes and need to find the scale factor, We must know which one was the original and which one is the image or the new shape. Then we need to know the length of corresponding sides and set them up in a ratio like so:

Scale Factor = \frac{purple}{black}

Scale factor = \frac{10}{20}  = \frac{1}{2}


You might be interested in
What is the value of x?<br> 39° (3x)°
Likurg_2 [28]

Answer:

1 because having anything power 0 is 1

5 0
2 years ago
Read 2 more answers
I need help plz I don’t know how to do it
Dovator [93]
The answer is 9m :) good luck!
6 0
3 years ago
Read 2 more answers
Evaulate 3/2 +(-k) + (-2) where = -5/2
Dennis_Churaev [7]

Step-by-step explanation:

Did you mean

Evaluate 3/2 + (-k) + (-2) where k = -5/2

= 3/2 - (-5/2) - 2

= 3/2 + 5/2 - 2

= 8/2 - 2

= 4 - 2

= 2

6 0
2 years ago
Find 2 common angles that sum to (17pi/12) 2. Evaluate tan(17pi/12) using the sum identity for tangent.
Dmitry [639]
Note that
\frac{17 \pi }{12} = \frac{3 \pi }{12} + \frac{14 \pi }{12} = \frac{ \pi }{4} + \frac{7 \pi }{6}

Note that
x= \frac{ \pi }{4}:\,\, sin(x) =cos(x)= \frac{1}{ \sqrt{2} },\,tan(x)=1\\x= \frac{7 \pi }{6} :\,\,sin(x)=- \frac{1}{2} ,\,\,cos(x)=- \frac{ \sqrt{3} }{2} ,\,\,tan(x)= \frac{1}{ \sqrt{3} }

Use the identity
tan(x+y)= \frac{tan(x)+tan(y)}{1-tan(x)tan(y)}

Therefore
tan( \frac{17 \pi }{12} )= \frac{1+ \frac{1}{ \sqrt{3} } }{1- \frac{1}{ \sqrt{3} } } = \frac{ \sqrt{3}+1 }{ \sqrt{3}-1} =  \frac{( \sqrt{3}+1 )^{2}}{( \sqrt{3}-1 )( \sqrt{3}+1 )}  = \frac{3+1+2 \sqrt{3}}{3-1} =2+ \sqrt{3}

Answer: 2 + √3
8 0
3 years ago
Graph this function:<br> y= 5x - 18
lutik1710 [3]
The graph is shown below. 

5 0
3 years ago
Other questions:
  • The viera family is traveling from Philadelphia to Orlando for vacation the equation y=1,000-65x represents the distance in mile
    6·1 answer
  • Can someone PLEASEEEE help me with this I don’t understand how to do it
    5·1 answer
  • Find the circumference of a circular field with a diameter of 16 yards.<br> (Let it = 3.14)
    14·1 answer
  • At the snack bar, 12 hot dogs are sold for every 10 hamburgers sold. At this rate, how many hamburgers will be sold if 66 hot do
    14·2 answers
  • Write two expressions<br><br> where the solution is 19
    9·2 answers
  • Add the deimcimals. Round your answer to the nearest thousandth 73.4582 + 2.0033
    5·2 answers
  • Y=x+ 2
    6·1 answer
  • Find the missing side length in the right triangle. ​
    12·1 answer
  • A bag contains 40 red and green marbles. The number of green marbles, g, is 9 times the number of red marbles, r.
    10·1 answer
  • What is the 9th term of this sequence?<br> 1, 3, 5, 7, ...
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!