1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
14

the sum of 3 decimal numbers is 6. Exactly one of the numbers is less than 1 what could those numbers be.

Mathematics
1 answer:
kati45 [8]3 years ago
3 0
There are infinitely many solutions to this problem (which is why it asks what could those numbers be), so you just have to make one up!

Start with the first sentence.
x + y + z = 6.0

Now one of those numbers has to be less than 1. I'll choose x. And I'll choose a random number, say, 0.7.

0.7 + y + z = 6.0

Now I'll subtract 0.7 from both sides to see what y and z have to add up to.

0.7 + y + z - 0.7 = 6.0 - 0.7
y + z = 5.3

Now I'll choose a random number for y that's less than 5.3.

2.6 + z = 5.3

And subtract 2.6 from both sides to find z.

2.6 + z - 2.6 = 5.3 - 2.6
z = 2.7

And now we have our numbers!
x = <u>0.7</u>
y = <u>2.6</u>
z = <u>2.7</u>
You might be interested in
A box with a square base and open top must have a volume of 296352 c m 3 . We wish to find the dimensions of the box that minimi
mestny [16]

Answer:

  • Base Length of 84cm
  • Height of 42 cm.

Step-by-step explanation:

Given a box with a square base and an open top which must have a volume of 296352 cubic centimetre. We want to minimize the amount of material used.

Step 1:

Let the side length of the base =x

Let the height of the box =h

Since the box has a square base

Volume, V=x^2h=296352

h=\dfrac{296352}{x^2}

Surface Area of the box = Base Area + Area of 4 sides

A(x,h)=x^2+4xh\\$Substitute h=\dfrac{296352}{x^2}\\A(x)=x^2+4x\left(\dfrac{296352}{x^2}\right)\\A(x)=\dfrac{x^3+1185408}{x}

Step 2: Find the derivative of A(x)

If\:A(x)=\dfrac{x^3+1185408}{x}\\A'(x)=\dfrac{2x^3-1185408}{x^2}

Step 3: Set A'(x)=0 and solve for x

A'(x)=\dfrac{2x^3-1185408}{x^2}=0\\2x^3-1185408=0\\2x^3=1185408\\$Divide both sides by 2\\x^3=592704\\$Take the cube root of both sides\\x=\sqrt[3]{592704}\\x=84

Step 4: Verify that x=84 is a minimum value

We use the second derivative test

A''(x)=\dfrac{2x^3+2370816}{x^3}\\$When x=84$\\A''(x)=6

Since the second derivative is positive at x=84, then it is a minimum point.

Recall:

h=\dfrac{296352}{x^2}=\dfrac{296352}{84^2}=42

Therefore, the dimensions that minimizes the box surface area are:

  • Base Length of 84cm
  • Height of 42 cm.
5 0
2 years ago
Emie ordered 3 buckets of fried chicken at $11.95 each 5 pints and Cole slaw at $2.19 each. The sales tax was $3.04. About how m
Oliga [24]

Answer:

Around $49 the actual answer is $49.84

3 0
2 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
William scored 24.5 points out of 30 on his math assignment. His teacher subtracted 5 points for being late. How many points is
Svetradugi [14.3K]

Answer:

William was 0.5 points away from a perfect score.

Step-by-step explanation:

If the teacher didn't subtract 5 points, he would have 24.5 + 5 = 29.5 points.

30 - 29.5 = 0.5

William was 0.5 points away from a perfect score.

8 0
3 years ago
45 POINTS PLEZ HELP MEE
levacccp [35]
See attached scatter plot

this does not show a linear pattern

7 0
3 years ago
Other questions:
  • I need help simplifying this expression ( 7y - 8 + 6y - 3) please explain thanks !
    7·2 answers
  • Which statement must be true?. 1.) If a parallelogram is not a rectangle, then it is not a square. 2.) If a parallelogram is not
    8·1 answer
  • 14. Find the equation of the line parallel to x - y = -5 and passes through the point (-3,1)
    11·1 answer
  • {x = 3y + 11<br> {2x-3 = 16
    7·1 answer
  • Write an equation and solve
    12·1 answer
  • Reg drew a polygon with more sides than a square and fewer vertices than a heptagon
    15·2 answers
  • If 3,000 bacteria, with a growth constant (k) of 2.8 per hour, are present at the beginning of an experiment, in how many hours
    11·1 answer
  • A tutot earns $105 for 3 hours of tutoring. How much would she earn if she tutored for
    13·2 answers
  • Karina owns a bakery where she orders both green apples and red apples to use in her baked goods. The supplier of the green appl
    8·2 answers
  • In scientific notation, 8,700 is written:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!