1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
4 years ago
12

This semicircle has a diameter of 5 m.

Mathematics
2 answers:
Mumz [18]4 years ago
8 0
3.93  is the correct answer.
I hope this helps.
Svetradugi [14.3K]4 years ago
7 0
3.93 Should be it
Formula for area of a semicircle:<span> Area=pi* r^2/2.
The radius is 2.5
</span>
You might be interested in
I just want to know if I’m right
Svetradugi [14.3K]

Answer:

correct

Step-by-step explanation:

supplementary is when 2 angles add up to 180

8 0
3 years ago
Read 2 more answers
Find the 2th term of the expansion of (a-b)^4.​
vladimir1956 [14]

The second term of the expansion is -4a^3b.

Solution:

Given expression:

(a-b)^4

To find the second term of the expansion.

(a-b)^4

Using Binomial theorem,

(a+b)^{n}=\sum_{i=0}^{n}\left(\begin{array}{l}n \\i\end{array}\right) a^{(n-i)} b^{i}

Here, a = a and b = –b

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

Substitute i = 0, we get

$\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}=1 \cdot \frac{4 !}{0 !(4-0) !} a^{4}=a^4

Substitute i = 1, we get

$\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}=\frac{4 !}{3!} a^{3}(-b)=-4 a^{3} b

Substitute i = 2, we get

$\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}=\frac{12}{2 !} a^{2}(-b)^{2}=6 a^{2} b^{2}

Substitute i = 3, we get

$\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}=\frac{4}{1 !} a(-b)^{3}=-4 a b^{3}

Substitute i = 4, we get

$\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=1 \cdot \frac{(-b)^{4}}{(4-4) !}=b^{4}

Therefore,

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

=\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}+\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}+\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}+\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}+\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}

Hence the second term of the expansion is -4a^3b.

3 0
3 years ago
Is -9 a solution of -9f=90-f
Fantom [35]

Answer:

f = -11.25

Step-by-step explanation:

-9f = 90 - f

-8f = 90

f = 90 / -8

f = -11.25

6 0
4 years ago
Suku tengah barisan aritmetika adalah 15. Jika banyaknya suku barisan tersebut 11 dan suku ke 4 bernilai -3, tentukan suku terak
Lisa [10]

Answer:

hindi po maintindihan yung tanong nyo po

4 0
3 years ago
Anthony goes to the gym for __30____ minutes on Monday. Every day he ___increases____his gym time by _____5 minutes_______. If h
Stolb23 [73]
Geometric sequence is a sequence of numbers that have a common ratio between them.
6 0
3 years ago
Other questions:
  • How to do this?
    12·1 answer
  • 191 rounded to nearest ten
    6·2 answers
  • Help Help Help ....... please answer this question fast fast......
    14·2 answers
  • I need help again. once again due TM helppp
    6·2 answers
  • Sustainable development is must for the world​
    6·1 answer
  • HELP ASAP
    13·1 answer
  • (50 x 2) + (15 x 2) in words
    7·2 answers
  • 9² • (1+4) + 7 – 3 • 4 =
    13·2 answers
  • HELP: Solve for x. <br> 10<br> 34<br> 38<br> 74
    8·1 answer
  • | x | &lt; 2 <br><br> solve the inequality and then graph the solution
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!