<span>Using processing software (Excel) or even a decent scientific calculator. You input the values and generate the best fit cubic equation.
For number 1, the equation is
y = 8x10</span>⁻⁵ x³ - 0.0097 x² + 0.374 x + 1.083
where x is the number of years since 1900
y is the pounds cheese consumed
For number 2, the equation is
y = -3x10⁻⁵ x³ + 0.0028 x² + 0.2155 x + 1.7736
For number 3
P(-1) = 18
I’ll check it give me a minute I’m mainly writing this so I know to come to this just sec
You require the Pythagorean Theorem: in a right triangle, the sum of the squares of the legs equals the square of the hypotenuse.In this case 6^2 + 8^2 = 36 + 64 = 100 = 10^2
the hypotenuse is 10.
Answer:
Step-by-step explanation:
To make the problem easier to solve, we will set it up as the equation of the length of time of each class times the number of classes equals the total amount of minutes. However, since we don't know the number of classes, we'll symbolize our two unknowns with two variables.
75x + 45y = 705
(75x + 45y)/15 = 705/15
5x + 3y = 47
y = (47-5x)/3
It looks like we can't simplify the equation any more, so now it is a matter of trial and error. The minimum number of Saturday classes means the maximum number of weekday classes. We first will test for the maximum by assuming there are no Saturday classes, then will work our way up until x is an integer.
If x = 0
(47-5(0))/3 = 47/3 = 15.6666
If x = 1
(47-5(1))/3 = 42/3 = 14
This works. Therefore, the maximum number of weekday classes is 14, or choice b.
![\bf \textit{Logarithm Cancellation Rules} \\\\ \stackrel{\stackrel{\textit{we'll use this one}}{\downarrow }}{log_a a^x = x}\qquad \qquad a^{log_a x}=x~\hfill\stackrel{recall}{ln=log_e}\qquad log_e(e^z)=z \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7BLogarithm%20Cancellation%20Rules%7D%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B%5Cdownarrow%20%7D%7D%7Blog_a%20a%5Ex%20%3D%20x%7D%5Cqquad%20%5Cqquad%20a%5E%7Blog_a%20x%7D%3Dx~%5Chfill%5Cstackrel%7Brecall%7D%7Bln%3Dlog_e%7D%5Cqquad%20log_e%28e%5Ez%29%3Dz%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)

and you plug that in your calculator to get about -0.27465307216702742285.